Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 10(2): e1003928, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586151

RESUMEN

Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.


Asunto(s)
Asparagina/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Nitrógeno/metabolismo , Fagosomas/metabolismo , Estrés Fisiológico , Tuberculosis/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Immunoblotting , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Inmunoelectrónica , Fagosomas/microbiología
2.
Infect Immun ; 82(2): 476-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24478064

RESUMEN

During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis.


Asunto(s)
Metabolismo de los Lípidos , Lipoproteínas VLDL/metabolismo , Macrófagos/microbiología , Mycobacterium avium/crecimiento & desarrollo , Mycobacterium avium/metabolismo , Animales , División Celular , Células Cultivadas , Femenino , Cuerpos de Inclusión/microbiología , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mycobacterium avium/ultraestructura
3.
PLoS Negl Trop Dis ; 7(11): e2502, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244764

RESUMEN

BACKGROUND: Mycobacterium ulcerans, a slow-growing environmental bacterium, is the etiologic agent of Buruli ulcer, a necrotic skin disease. Skin lesions are caused by mycolactone, the main virulence factor of M. ulcerans, with dermonecrotic (destruction of the skin and soft tissues) and immunosuppressive activities. This toxin is secreted in vesicles that enhance its biological activities. Nowadays, it is well established that the main reservoir of the bacilli is localized in the aquatic environment where the bacillus may be able to colonize different niches. Here we report that plant polysaccharides stimulate M. ulcerans growth and are implicated in toxin synthesis regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, by selecting various algal components, we have identified plant-specific carbohydrates, particularly glucose polymers, capable of stimulating M. ulcerans growth in vitro. Furthermore, we underscored for the first time culture conditions under which the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, is down-regulated. Using a quantitative proteomic approach and analyzing transcript levels by RT-qPCR, we demonstrated that its regulation is not at the transcriptional or translational levels but must involve another type of regulation. M. ulcerans produces membrane vesicles, as other mycobacterial species, in which are the mycolactone is concentrated. By transmission electron microscopy, we observed that the production of vesicles is independent from the toxin production. Concomitant with this observed decrease in mycolactone production, the production of mycobacterial siderophores known as mycobactins was enhanced. CONCLUSIONS/SIGNIFICANCE: This work is the first step in the identification of the mechanisms involved in mycolactone regulation and paves the way for the discovery of putative new drug targets in the future.


Asunto(s)
Macrólidos/metabolismo , Mycobacterium ulcerans/metabolismo , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Cell Host Microbe ; 10(3): 248-59, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21925112

RESUMEN

Mycobacterium tuberculosis thrives within macrophages by residing in phagosomes and preventing them from maturing and fusing with lysosomes. A parallel transcriptional survey of intracellular mycobacteria and their host macrophages revealed signatures of heavy metal poisoning. In particular, mycobacterial genes encoding heavy metal efflux P-type ATPases CtpC, CtpG, and CtpV, and host cell metallothioneins and zinc exporter ZnT1, were induced during infection. Consistent with this pattern of gene modulation, we observed a burst of free zinc inside macrophages, and intraphagosomal zinc accumulation within a few hours postinfection. Zinc exposure led to rapid CtpC induction, and ctpC deficiency caused zinc retention within the mycobacterial cytoplasm, leading to impaired intracellular growth of the bacilli. Thus, the use of P(1)-type ATPases represents a M. tuberculosis strategy to neutralize the toxic effects of zinc in macrophages. We propose that heavy metal toxicity and its counteraction might represent yet another chapter in the host-microbe arms race.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/enzimología , Tuberculosis/metabolismo , Zinc/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/genética , Células Cultivadas , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA