Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 12(12): e1006466, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27935966

RESUMEN

Human genome-wide association studies (GWAS) have shown that genetic variation at >130 gene loci is associated with type 2 diabetes (T2D). We asked if the expression of the candidate T2D-associated genes within these loci is regulated by a common locus in pancreatic islets. Using an obese F2 mouse intercross segregating for T2D, we show that the expression of ~40% of the T2D-associated genes is linked to a broad region on mouse chromosome (Chr) 2. As all but 9 of these genes are not physically located on Chr 2, linkage to Chr 2 suggests a genomic factor(s) located on Chr 2 regulates their expression in trans. The transcription factor Nfatc2 is physically located on Chr 2 and its expression demonstrates cis linkage; i.e., its expression maps to itself. When conditioned on the expression of Nfatc2, linkage for the T2D-associated genes was greatly diminished, supporting Nfatc2 as a driver of their expression. Plasma insulin also showed linkage to the same broad region on Chr 2. Overexpression of a constitutively active (ca) form of Nfatc2 induced ß-cell proliferation in mouse and human islets, and transcriptionally regulated more than half of the T2D-associated genes. Overexpression of either ca-Nfatc2 or ca-Nfatc1 in mouse islets enhanced insulin secretion, whereas only ca-Nfatc2 was able to promote ß-cell proliferation, suggesting distinct molecular pathways mediating insulin secretion vs. ß-cell proliferation are regulated by NFAT. Our results suggest that many of the T2D-associated genes are downstream transcriptional targets of NFAT, and may act coordinately in a pathway through which NFAT regulates ß-cell proliferation in both mouse and human islets.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Insulina/genética , Factores de Transcripción NFATC/genética , Animales , Proliferación Celular/genética , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Ligamiento Genético , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones , Ratones Obesos , Factores de Transcripción NFATC/biosíntesis , Regiones Promotoras Genéticas
2.
Proteins ; 83(8): 1427-35, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25973843

RESUMEN

Using the semiempirical method PM7, an attempt has been made to quantify the error in prediction of the in vivo structure of proteins relative to X-ray structures. Three important contributory factors are the experimental limitations of X-ray structures, the difference between the crystal and solution environments, and the errors due to PM7. The geometries of 19 proteins from the Protein Data Bank that had small R values, that is, high accuracy structures, were optimized and the resulting drop in heat of formation was calculated. Analysis of the changes showed that about 10% of this decrease in heat of formation was caused by faults in PM7, the balance being attributable to the X-ray structure and the difference between the crystal and solution environments. A previously unknown fault in PM7 was revealed during tests to validate the geometries generated using PM7. Clashscores generated by the Molprobity molecular mechanics structure validation program showed that PM7 was predicting unrealistically close contacts between nonbonding atoms in regions where the local geometry is dominated by very weak noncovalent interactions. The origin of this fault was traced to an underestimation of the core-core repulsion between atoms at distances smaller than the equilibrium distance.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Conformación Proteica , Proteínas/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Reproducibilidad de los Resultados , Termodinámica
3.
J Neurosci Methods ; 162(1-2): 148-54, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17306887

RESUMEN

Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations.


Asunto(s)
Microscopía/instrumentación , Red Nerviosa/fisiología , Animales , Electrodos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía/métodos , Neuronas Motoras/fisiología , Babosas Marinas Tritonia/citología , Babosas Marinas Tritonia/fisiología
4.
J Mol Model ; 21(1): 3, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25605595

RESUMEN

An accurate model of three-dimensional protein structure is important in a variety of fields such as structure-based drug design and mechanistic studies of enzymatic reactions. While the entries in the Protein Data Bank ( http://www.pdb.org ) provide valuable information about protein structures, a small fraction of the PDB structures were found to contain anomalies not reported in the PDB file. The semiempirical PM7 method in MOPAC2012 was used for identifying anomalously short hydrogen bonds, C-H⋯O/C-H⋯N interactions, non-bonding close contacts, and unrealistic covalent bond lengths in recently published Protein Data Bank files. It was also used to generate new structures with these faults removed. When the semiempirical models were compared to those of PDB_REDO (http://www.cmbi.ru.nl/pdb_redo/), the clashscores, as defined by MolProbity ( http://molprobity.biochem.duke.edu/), were better in about 50% of the structures. The semiempirical models also had a lower root-mean-square-deviation value in nearly all cases than those from PDB_REDO, indicative of a better conservation of the tertiary structure. Finally, the semiempirical models were found to have lower clashscores than the initial PDB file in all but one case. Because this approach maintains as much of the original tertiary structure as possible while improving anomalous interactions, it should be useful to theoreticians, experimentalists, and crystallographers investigating the structure and function of proteins.


Asunto(s)
Bases de Datos de Proteínas , Modelos Moleculares , Proteínas/química , Enlace de Hidrógeno , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA