Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 135(8): 3255-61, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23374032

RESUMEN

Molecules are often born with high energy and large-amplitude vibrations. In solution, a newly formed molecule cools down by transferring energy to the surrounding solvent molecules. The progression of the molecular and solute-solvent cage structure during this fundamental process has been elusive, and spectroscopic data generally do not provide such structural information. Here, we use picosecond X-ray liquidography (solution scattering) to visualize time-dependent structural changes associated with the vibrational relaxation of I(2) molecules in two different solvents, CCl(4) and cyclohexane. The birth and vibrational relaxation of I(2) molecules and the associated rearrangement of solvent molecules are mapped out in the form of a temporally varying interatomic distance distribution. The I-I distance increases up to ~4 Å and returns to the equilibrium distance (2.67 Å) in the ground state, and the first solvation cage expands by ~1.5 Å along the I-I axis and then shrinks back accompanying the structural change of the I(2) molecule.

2.
Acta Chim Slov ; 58(3): 434-41, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24062101

RESUMEN

Basic techniques in ultrafast time-resolved optical spectroscopy and x-ray diffraction are described for a broad scientific community. Basic experimental setups are presented, and theories for the interpretation of experimental data are briefly described. The power of these ultrafast techniques is shown with a few selected examples. It is shown in particular how they permit to film atomic motions during a chemical reaction. The strong and weak points of the two complementary techniques are discussed in some detail. A number of basic references are included to help interested readers. Future developments of ultrafast techniques are conjectured at the end of the paper.

3.
Acta Crystallogr A ; 66(Pt 2): 252-60, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20164648

RESUMEN

A time-resolved X-ray solution scattering study of bromine molecules in CCl(4) is presented as an example of how to track atomic motions in a simple chemical reaction. The structures of the photoproducts are tracked during the recombination process, geminate and non-geminate, from 100 ps to 10 micros after dissociation. The relaxation of hot Br(2)(*) molecules heats the solvent. At early times, from 0.1 to 10 ns, an adiabatic temperature rise is observed, which leads to a pressure gradient that forces the sample to expand. The expansion starts after about 10 ns with the laser beam sizes used here. When thermal artefacts are removed by suitable scaling of the transient solvent response, the excited-state solute structures can be obtained with high fidelity. The analysis shows that 30% of Br(2)(*) molecules recombine directly along the X potential, 60% are trapped in the A/A' state with a lifetime of 5.5 ns, and 10% recombine non-geminately via diffusive motion in about 25 ns. The Br-Br distance distribution in the A/A' state peaks at 3.0 A.


Asunto(s)
Bromo/química , Tetracloruro de Carbono/química , Cristalografía por Rayos X , Luz , Modelos Moleculares , Fotólisis , Solventes/química , Temperatura , Factores de Tiempo , Rayos X
4.
J Am Chem Soc ; 129(44): 13584-91, 2007 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17939658

RESUMEN

We report a liquid-phase time-resolved X-ray diffraction study that resolves the molecular structures of the short-lived intermediates formed in the photodissociation of tetrabromomethane in methanol. Time-resolved X-ray diffraction can detect all chemical species simultaneously, and the diffraction signal from each chemical species can be quantitatively calculated from molecular structures and compared with experimental data with high accuracy and precision. The photochemistry of carbon tetrahalides has long been explored to describe their reactions in the natural environment due to its relevance to ozone depletion. Excited with an ultraviolet optical pulse, the complicated photodissociation dynamics of CBr4 was followed in a wide temporal range from picoseconds up to microseconds and associated rate coefficients were determined by analyzing time-resolved diffraction patterns accumulated from 100 ps X-ray pulses. The homolytic cleavage of one C-Br bond in the parent CBr4 molecule yields the CBr3 and Br radicals, which escape from the solvent cage and combine nongeminately to form C2Br6 and Br2, respectively. C2Br6 eventually decays to give C2Br4 and Br2 as final stable products. Our diffraction data at the current signal-to-noise ratio could not provide any evidence for the geminate recombination of the CBr3 and Br radicals to form the Br2CBr-Br isomer or the solvated ion pair, implying that their formation is a minor channel compared with those observed clearly by time-resolved diffraction in this work.

5.
J Phys Chem A ; 110(38): 11178-87, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16986853

RESUMEN

Various molecular species that can be populated during the photoreaction of carbon tetrahalides CX(4) (X = Cl, Br, I) in the gas phase and in solution have been studied by ab initio and density functional theory (DFT) calculations. Geometries, energies, and vibrational frequencies of CX(4), CX(3), CX(2), C(2)X(6), C(2)X(5), C(2)X(4), X(2), and the isomer X(2)CX-X were calculated and transition states connecting these species were characterized. Spin-orbit DFT (SODFT) computations were also performed to include the relativistic effects, which cannot be neglected for Br and I atoms. The calculated potential energy surfaces satisfactorily describe the reactions of the photoexcited CX(4) molecules. In the gas phase, the initial C-X bond rupture in CX(4) is followed by secondary C-X breakage in the CX(3) radical, leading to CX(2) and 2X, and the formation of C(2)X(6) or C(2)X(4) through bimolecular recombination of the CX(3) or CX(2) radicals is favored thermodynamically. In solution, by contrast, the X(2)CX-X isomer is formed via X-X binding, and two CX(3) radicals recombine nongeminately to form C(2)X(6), which then dissociates into C(2)X(4) and X(2) through C(2)X(5). The Raman intensities and the vibrational frequencies, as well as the absorption spectra and oscillator strengths of the Br(2)CBr-Br isomer in the gas phase and in various solvents were computed and the calculated absorption and Raman spectra of the Br(2)CBr-Br isomer in various solutions are in good agreement with the experimental data. The natural population analysis indicates that the Br(2)CBr-Br isomer corresponds to the recently reported solvent-stabilized solvated ion pair (CBr(3)(+)//Br(-))(solv) in the highly polar alcohol solvent. The singlet-triplet energy separations of the CX(2) radicals in the gas phase and in solution were evaluated with high level computational methods, and the optimized geometric parameters are in good agreement with the experimental results. The geometric and energetic differences between the singlet and triplet states were explained by the electronic properties of the CX(2) radicals. C(2)X(4), C(2)X(5), and C(2)X(6) (X = Br, I) in the gas phase and in solution were optimized at different computational levels, and the optimized geometric parameters of C(2)I(4) are in very good agreement with the experimental data.

6.
Phys Rev Lett ; 92(12): 125505, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-15089686

RESUMEN

We present a time-resolved x-ray diffraction study to monitor the recombination of laser-dissociated iodine molecules dissolved in CCl4. The change in structure of iodine is followed during the whole recombination process. The deexcitation of solute molecules produces a heating of the solvent and induces tiny changes in its structure. The variations in the distance between pairs of chlorine atoms in adjacent CCl4 molecules are probed on the mA length scale. However, the most striking outcome of the present work is the experimental determination of temporally varying atom-atom pair distribution functions. Variations of the mean density of the solution during thermal expansion are also followed in real time. One concludes that not only time-resolved optical spectroscopy but also time-resolved x-ray diffraction can be used to monitor atomic motions in liquids.


Asunto(s)
Difracción de Rayos X/métodos , Tetracloruro de Carbono/química , Yodo/química , Cinética , Soluciones , Difracción de Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA