Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220837

RESUMEN

Most of the microbial degradation in oil reservoirs is believed to take place at the oil-water transition zone (OWTZ). However, a recent study indicates that there is microbial life enclosed in microliter-sized water droplets dispersed in heavy oil of Pitch Lake in Trinidad and Tobago. This life in oil suggests that microbial degradation of oil also takes place in water pockets in the oil-bearing rock of an oil leg independent of the OWTZ. However, it is unknown whether microbial life in water droplets dispersed in oil is a generic property of oil reservoirs rather than an exotic exception. Hence, we took samples from three heavy-oil seeps, Pitch Lake (Trinidad and Tobago), the La Brea Tar Pits (California, USA), and an oil seep on the McKittrick oil field (California, USA). All three tested oil seeps contained dispersed water droplets. Larger droplets between 1 and 10 µl revealed high cell densities of up to 109 cells ml-1 Testing for ATP content and LIVE/DEAD staining showed that these populations consist of active and viable microbial cells with an average of 60% membrane-intact cells and ATP concentrations comparable to those of other subsurface ecosystems. Microbial community analyses based on 16S rRNA gene amplicon sequencing revealed the presence of known anaerobic oil-degrading microorganisms. Surprisingly, the community analyses showed similarities between all three oil seeps, revealing common OTUs, although the sampling sites were thousands of kilometers apart. Our results indicate that small water inclusions are densely populated microhabitats in heavy oil and possibly a generic trait of degraded-oil reservoirs.IMPORTANCE Our results confirmed that small water droplets in oil are densely populated microhabitats containing active microbial communities. Since these microhabitats occurred in three tested oil seeps which are located thousands of kilometers away from each other, such populated water droplets might be a generic trait of biodegraded oil reservoirs and might be involved in the overall oil degradation process. Microbial degradation might thus also take place in water pockets in the oil-bearing oil legs of the reservoir rock rather than only at the oil-water transition zone.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Microbiota , Yacimiento de Petróleo y Gas/microbiología , Microbiología del Agua , Archaea/clasificación , Bacterias/clasificación , California , Lagos , Los Angeles , ARN de Archaea/análisis , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Trinidad y Tobago , Agua/química
2.
FEMS Microbiol Ecol ; 98(1)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35040992

RESUMEN

Despite hostile environmental conditions, microbial communities have been found in µL-sized water droplets enclosed in heavy oil of the Pitch Lake, Trinidad. Some droplets showed high sulfate concentrations and surprisingly low relative abundances of sulfate-reducing bacteria in a previous study. Hence, we investigated here whether sulfate reduction might be inhibited naturally. Ion chromatography revealed very high formate concentrations around 2.37 mM in 21 out of 43 examined droplets. Since these concentrations were unexpectedly high, we performed growth experiments with the three sulfate-reducing type strains Desulfovibrio vulgaris, Desulfobacter curvatus, and Desulfococcus multivorans, and tested the effects of 2.5, 8, or 10 mM formate on sulfate reduction. Experiments demonstrated that 8 or 10 mM formate slowed down the growth rate of D. vulgaris and D. curvatus and the sulfate reduction rate of D. curvatus and D. multivorans. Increasing formate concentrations delayed the onsets of growth and sulfate reduction of D. multivorans, which were even inhibited completely while formate was added constantly. Contrary to previous studies, D. multivorans was the only organism capable of formate consumption. Our study suggests that formate accumulates in the natural environment of the water droplets dispersed in oil and that such levels are very likely inhibiting sulfate-reducing microorganisms.


Asunto(s)
Desulfovibrio , Microbiota , Formiatos , Oxidación-Reducción , Sulfatos
3.
Mar Pollut Bull ; 53(1-4): 5-19, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16426645

RESUMEN

The main goal of the EU Water Framework Directive (WFD) is to achieve good ecological status across European surface waters by 2015 and as such, it offers the opportunity and thus the challenge to improve the protection of our coastal systems. It is the main example for Europe's increasing desire to conserve aquatic ecosystems. Ironically, since c. 1975 the increasing adoption of EU directives has been accompanied by a decreasing interest of, for example, the Dutch government to assess the quality of its coastal and marine ecosystems. The surveillance and monitoring started in NL in 1971 has declined since the 1980s resulting in a 35% reduction of sampling stations. Given this and interruptions the remaining data series is considered to be insufficient for purposes other than trend analysis and compliance. The Dutch marine managers have apparently chosen a minimal (cost-effective) approach despite the WFD implicitly requiring the incorporation of the system's 'ecological complexity' in indices used to evaluate the ecological status of highly variable systems such as transitional and coastal waters. These indices should include both the community structure and system functioning and to make this really cost-effective a new monitoring strategy is required with a tailor-made programme. Since the adoption of the WFD in 2000 and the launching of the European Marine Strategy in 2002 (and the recently proposed Marine Framework Directive) we suggest reviewing national monitoring programmes in order to integrate water quality monitoring and biological monitoring and change from 'station oriented monitoring' to 'basin or system oriented monitoring' in combination with specific 'cause-effect' studies for highly dynamic coastal systems. Progress will be made if the collected information is integrated and aggregated in valuable tools such as structure- and functioning-oriented computer simulation models and Decision Support Systems. The development of ecological indices integrating community structure and system functioning, such as in Ecological Network Analysis, are proposed to meet a cost-effective approach at the national level and full assessment of the ecosystem status at the EU level. The WFD offers the opportunity to re-consider and re-invest in environmental research and monitoring. Using examples from the Netherlands and, to a lesser extent, the United Kingdom, the present paper therefore reviews marine monitoring and marine environmental research in combination and in the light of such major policy initiatives such as the WFD.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes del Agua/análisis , Contaminación del Agua/prevención & control , Animales , Biodiversidad , Biomasa , Costos y Análisis de Costo , Monitoreo del Ambiente/economía , Contaminantes Ambientales/análisis , Unión Europea , Sedimentos Geológicos/análisis , Biología Marina/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA