Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 207(12): 3081-3089, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34789558

RESUMEN

IL-4 receptor signaling is supposed to play a major role in anti-inflammatory polarization and proliferation of adipose tissue macrophages. In this study, we examined the metabolic and inflammatory phenotype of C57BL/6J mice (IIl4ra) with LysM-dependent knockout (IIl4ra Δmyel) of the IL-4 receptor α-chain (IL-4Rα), the mandatory signaling component of IL-4 and IL-13, on chow and high-fat diet. Lean IIl4ra Δmyel mice showed decreased insulin sensitivity, no divergent adipose tissue macrophage polarization, but an increased percentage of CD8+ T cells in visceral adipose tissue. After 20 wk of a high-fat diet, IIl4ra Δmyel mice exhibited higher glucose tolerance, no changes in the lymphocyte compartment and fewer M1 macrophages in visceral adipose tissue. In vivo adipose tissue macrophage proliferation measured by BrdU incorporation was unaffected by Il4ra knockout. Interestingly, we show that IL-4Rα signaling directly augmented Itgax (Cd11c) gene expression in bone marrow-derived macrophages and increased the amount of CD11c+ macrophages in adipose tissue explants. Myeloid cell-specific knockout of Il4ra deteriorated insulin sensitivity in lean mice but improved parameters of glucose homeostasis and partially protected from adipose tissue inflammation in obese mice. Hence, IL-4Rα signaling probably plays a minor role in maintaining the macrophage M2 population and proliferation rates in vivo. Moreover, our data indicate that IL-4 signaling plays a proinflammatory role in adipose tissue inflammation by directly upregulating CD11c on adipose tissue macrophages.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Obesidad/genética , Obesidad/metabolismo , Receptores de Interleucina-4/metabolismo
2.
Eur J Immunol ; 51(6): 1399-1411, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33784418

RESUMEN

Obesity is frequently associated with a chronic low-grade inflammation in the adipose tissue (AT) and impaired glucose homeostasis. Adipose tissue macrophages (ATMs) have been shown to accumulate in the inflamed AT either by means of recruitment from the blood or local proliferation. ATM proliferation and activation can be stimulated by TH2 cytokines, such as IL-4 and IL-13, suggesting involvement of CD4-positive T cells in ATM proliferation and activation. Furthermore, several studies have associated T cells to alterations in glucose metabolism. Therefore, we sought to examine a direct impact of CD4-positive T cells on ATM activation, ATM proliferation and glucose homeostasis using an in vivo depletion model. Surprisingly, CD4 depletion did not affect ATM activation, ATM proliferation, or insulin sensitivity. However, CD4 depletion led to a significant improvement of glucose tolerance. In line with this, we found moderate disturbances in pancreatic endocrine function following CD4 depletion. Hence, our data suggest that the effect on glucose metabolism observed after CD4 depletion might be mediated by organs other than AT and independent of AT inflammation.


Asunto(s)
Tejido Adiposo/inmunología , Linfocitos T CD4-Positivos/inmunología , Glucosa/metabolismo , Inflamación/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Páncreas/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Homeostasis , Depleción Linfocítica , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Páncreas/inmunología
3.
J Immunol ; 198(7): 2927-2934, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28193830

RESUMEN

Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that focal sites of inflammation around dying adipocytes, so-called crown-like structures, exhibit a unique microenvironment for macrophage proliferation. Interestingly, locally proliferating macrophages were not classically activated (M1), but they exhibited a rather alternatively activated (M2) immune phenotype. In this study, we established organotypic cell cultures of AT explants to study the impact of cytokine treatment on local ATM proliferation, without the bias of early monocyte recruitment. We show that exposure of AT to Th2 cytokines, such as IL-4, IL-13, and GM-CSF, stimulates ATM proliferation, whereas Th1 cytokines, such as TNF-α, inhibit local ATM proliferation. Furthermore, AT from obese mice exhibits an increased sensitivity to IL-4 stimulation, indicated by an increased phosphorylation of STAT6. In line with this, gene expression of the IL-4 receptor (Il4ra) and its ligand IL-13 are elevated in AT of obese C57BL/6 mice. Most importantly, Il4ra expression and susceptibility to IL-4 or IL-13 treatment depend on IL-6 signaling, which seems to be the underlying mechanism of local ATM proliferation in obesity. We conclude that IL-6 acts as a Th2 cytokine in obesity by stimulating M2 polarization and local ATM proliferation, presumably due to upregulation of the IL-4 receptor α.


Asunto(s)
Tejido Adiposo/inmunología , Proliferación Celular , Interleucina-6/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Animales , Western Blotting , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 2/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
4.
J Biol Chem ; 292(37): 15180-15191, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28717008

RESUMEN

The z-disc is a structural component at the lateral borders of the sarcomere and is important for mechanical stability and contractility of both cardiac and skeletal muscles. Of note, the sarcomeric z-disc also represents a nodal point in cardiomyocyte function and signaling. Mutations of numerous z-disc proteins are associated with cardiomyopathies and muscle diseases. To identify additional z-disc proteins that might contribute to cardiac disease, we employed an in silico screen for cardiac-enriched cDNAs. This screen yielded a previously uncharacterized protein named cardiac-enriched FHL2-interacting protein (CEFIP), which exhibited a heart- and skeletal muscle-specific expression profile. Importantly, CEFIP was located at the z-disc and was up-regulated in several models of cardiomyopathy. We also found that CEFIP overexpression induced the fetal gene program and cardiomyocyte hypertrophy. Yeast two-hybrid screens revealed that CEFIP interacts with the calcineurin-binding protein four and a half LIM domains 2 (FHL2). Because FHL2 binds calcineurin, a phosphatase controlling hypertrophic signaling, we examined the effects of CEFIP on the calcineurin/nuclear factor of activated T-cell (NFAT) pathway. These experiments revealed that CEFIP overexpression further enhances calcineurin-dependent hypertrophic signal transduction, and its knockdown repressed hypertrophy and calcineurin/NFAT activity. In summary, we report on a previously uncharacterized protein CEFIP that modulates calcineurin/NFAT signaling in cardiomyocytes, a finding with possible implications for the pathogenesis of cardiomyopathy.


Asunto(s)
Calcineurina/metabolismo , Proteínas Portadoras/metabolismo , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Línea Celular Transformada , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/patología , Transporte de Proteínas , Interferencia de ARN , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo
5.
Diabetologia ; 60(5): 889-899, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28233033

RESUMEN

AIMS/HYPOTHESIS: Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. METHODS: Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo -/-). RESULTS: Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. CONCLUSIONS/INTERPRETATION: Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Peso Corporal/fisiología , Glucosa/metabolismo , Proteínas Hedgehog/metabolismo , Inflamación/metabolismo , Células Mieloides/metabolismo , Tejido Adiposo/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Proteínas Hedgehog/sangre , Proteínas Hedgehog/genética , Humanos , Técnicas In Vitro , Inflamación/sangre , Inflamación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
6.
Am J Physiol Endocrinol Metab ; 308(11): E1023-33, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25874903

RESUMEN

Obesity is frequently associated with a chronic low-grade inflammation within adipose tissue (AT). Although classical signs of inflammation are missing in AT inflammation, there is a significant increase in macrophages and, to a lesser extent, other immune cells, such as T cells, B cells, mast cells, and neutrophils. The spatial and temporal activation of these cells as well as their accumulation in the AT seem to be tightly linked to so-called crown-like structures (CLS). CLS are accumulations of adipose tissue macrophages (ATMs) around dead adipocytes and are thought to reflect a scavenger response. At present, data on the life cycle of CLS are missing. To better understand the cellular events underlying AT inflammation, we developed an approach that allows long-term imaging of ATMs, adipocytes, and CLS within live AT explants. We tested three putative reporter mouse lines for myeloid cells in regard to their suitability for live imaging. Thereby, we identified ATMs from CSF1R-eGFP mice to exhibit the most robust expression of eGFP. AT explants from these mice allowed stable live imaging for more than 7 days without significant phototoxicity. Long-term imaging thus revealed the accumulation of ATMs around dying adipocytes, migration of ATMs within AT, and also the degradation of the lipid remnants of perishing adipocytes. The observed behavior of ATMs in the context of AT inflammation is in line with previous studies but for the first time provides data on the specific behavior of individual ATMs and on the life cycle of CLS with unprecedented spatiotemporal resolution.


Asunto(s)
Tejido Adiposo/patología , Rastreo Celular/métodos , Macrófagos/patología , Imagen de Lapso de Tiempo/métodos , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/patología , Técnicas de Cultivo de Órganos , Receptor de Factor Estimulante de Colonias de Macrófagos/genética
7.
Front Immunol ; 15: 1201439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482013

RESUMEN

Introduction: Obesity is associated with chronic low-grade inflammation of adipose tissue (AT) and an increase of AT macrophages (ATMs) that is linked to the onset of type 2 diabetes. We have recently shown that neutralization of interleukin (IL)-6 in obese AT organ cultures inhibits proliferation of ATMs, which occurs preferentially in alternatively activated macrophage phenotype. Methods: In this study, we investigated AT biology and the metabolic phenotype of mice with myeloid cell-specific IL-6Rα deficiency (Il6ra Δmyel) after normal chow and 20 weeks of high-fat diet focusing on AT inflammation, ATM polarization and proliferation. Using organotypical AT culture and bone marrow derived macrophages (BMDMs) of IL-4Rα knockout mice (Il4ra -/-) we studied IL-6 signaling. Results: Obese Il6ra Δmyel mice exhibited no differences in insulin sensitivity or histological markers of AT inflammation. Notably, we found a reduction of ATMs expressing the mannose receptor 1 (CD206), as well as a decrease of the proliferation marker Ki67 in ATMs of Il6ra Δmyel mice. Importantly, organotypical AT culture and BMDM data of Il4ra -/- mice revealed that IL-6 mediates a shift towards the M2 phenotype independent from the IL-6/IL-4Rα axis. Discussion: Our results demonstrate IL-4Rα-independent anti-inflammatory effects of IL-6 on macrophages and the ability of IL-6 to maintain proliferation rates in obese AT.


Asunto(s)
Diabetes Mellitus Tipo 2 , Interleucina-6 , Ratones , Animales , Interleucina-6/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Ratones Noqueados , Obesidad/metabolismo
8.
Diabetes ; 70(2): 538-548, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158932

RESUMEN

Obesity is associated with chronic low-grade inflammation of visceral adipose tissue (AT) characterized by an increasing number of AT macrophages (ATMs) and linked to type 2 diabetes. AT inflammation is histologically indicated by the formation of so-called crown-like structures, as ATMs accumulate around dying adipocytes, and the occurrence of multinucleated giant cells (MGCs). However, to date, the function of MGCs in obesity is unknown. Therefore, the aim of this study was to characterize MGCs in AT and unravel the function of these cells. We demonstrated that MGCs occurred in obese patients and after 24 weeks of a high-fat diet in mice, accompanying signs of AT inflammation and then representing ∼3% of ATMs in mice. Mechanistically, we found evidence that adipocyte death triggered MGC formation. Most importantly, MGCs in obese AT had a higher capacity to phagocytize oversized particles, such as adipocytes, as shown by live imaging of AT, 45-µm bead uptake ex vivo, and higher lipid content in vivo. Finally, we showed that interleukin-4 treatment was sufficient to increase the number of MGCs in AT, whereas other factors may be more important for endogenous MGC formation in vivo. Most importantly, our data suggest that MGCs are specialized for clearance of dead adipocytes in obesity.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Células Gigantes/metabolismo , Obesidad/metabolismo , Fagocitosis/fisiología , Adipocitos/patología , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa , Células Gigantes/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Obesidad/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA