Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Chem Biol ; 17(7): 800-805, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33958791

RESUMEN

The covalent attachment of one or multiple heme cofactors to cytochrome c protein chains enables cytochrome c proteins to be used in electron transfer and redox catalysis in extracytoplasmic environments. A dedicated heme maturation machinery, whose core component is a heme lyase, scans nascent peptides after Sec-dependent translocation for CXnCH-binding motifs. Here we report the three-dimensional (3D) structure of the heme lyase CcmF, a 643-amino acid integral membrane protein, from Thermus thermophilus. CcmF contains a heme b cofactor at the bottom of a large cavity that opens toward the extracellular side to receive heme groups from the heme chaperone CcmE for cytochrome maturation. A surface groove on CcmF may guide the extended apoprotein to heme attachment at or near a loop containing the functionally essential WXWD motif, which is situated above the putative cofactor binding pocket. The structure suggests heme delivery from within the membrane, redefining the role of the chaperone CcmE.


Asunto(s)
Membrana Celular/metabolismo , Liasas/metabolismo , Membrana Celular/química , Liasas/química , Thermus thermophilus/enzimología
2.
J Struct Biol ; 193(3): 157-161, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26780475

RESUMEN

Septins are a conserved family of GTP-binding proteins that assemble into a highly ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. Many molecular functions and mechanisms of the septins in S. cerevisiae were already uncovered. However, structural information is only available from modeling the crystallized subunits of the human septins into the EM cryomicroscopy data of the yeast hetero-octameric septin rod. Octameric rods are the building block of septin filaments in yeast. We present here the first crystal structure of Cdc11, the terminal subunit of the octameric rod and discuss its structure in relation to its human homologues. Size exclusion chromatography analysis revealed that Cdc11 forms homodimers through its C-terminal coiled coil tail.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas de Unión al GTP/química , Proteínas de Saccharomyces cerevisiae/química , Septinas/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Trifosfato/química , Humanos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/química , Septinas/metabolismo
3.
Nat Commun ; 14(1): 5190, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626034

RESUMEN

Mono- and multiheme cytochromes c are post-translationally matured by the covalent attachment of heme. For this, Escherichia coli employs the most complex type of maturation machineries, the Ccm-system (for cytochrome c maturation). It consists of two membrane protein complexes, one of which shuttles heme across the membrane to a mobile chaperone that then delivers the cofactor to the second complex, an apoprotein:heme lyase, for covalent attachment. Here we report cryo-electron microscopic structures of the heme translocation complex CcmABCD from E. coli, alone and bound to the heme chaperone CcmE. CcmABCD forms a heterooctameric complex centered around the ABC transporter CcmAB that does not by itself transport heme. Our data suggest that the complex flops a heme group from the inner to the outer leaflet at its CcmBC interfaces, driven by ATP hydrolysis at CcmA. A conserved heme-handling motif (WxWD) at the periplasmic side of CcmC rotates the heme by 90° for covalent attachment to the heme chaperone CcmE that we find interacting exclusively with the CcmB subunit.


Asunto(s)
Citocromos c , Escherichia coli , Escherichia coli/genética , Transportadoras de Casetes de Unión a ATP , Apoproteínas , Hemo
4.
Sci Rep ; 7(1): 6179, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733658

RESUMEN

Latex clearing proteins (Lcps) are rubber oxygenases that catalyse the extracellular cleavage of poly (cis-1,4-isoprene) by Gram-positive rubber degrading bacteria. Lcp of Streptomyces sp. K30 (LcpK30) is a b-type cytochrome and acts as an endo-type dioxygenase producing C20 and higher oligo-isoprenoids that differ in the number of isoprene units but have the same terminal functions, CHO-CH2- and -CH2-COCH3. Our analysis of the LcpK30 structure revealed a 3/3 globin fold with additional domains at the N- and C-termini and similarities to globin-coupled sensor proteins. The haem group of LcpK30 is ligated to the polypeptide by a proximal histidine (His198) and by a lysine residue (Lys167) as the distal axial ligand. The comparison of LcpK30 structures in a closed and in an open state as well as spectroscopic and biochemical analysis of wild type and LcpK30 muteins provided insights into the action of the enzyme during catalysis.


Asunto(s)
Oxigenasas/química , Oxigenasas/metabolismo , Goma/química , Streptomyces/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biodegradación Ambiental , Catálisis , Imagen de Difusión por Resonancia Magnética , Modelos Moleculares , Péptidos/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
5.
FEBS Lett ; 591(12): 1657-1666, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28542725

RESUMEN

Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high-potential heme. The dissociation constant values indicate the formation of a low-affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes.


Asunto(s)
Citocromo-c Peroxidasa/metabolismo , Citocromos c/metabolismo , Geobacter/enzimología , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Periplasmáticas/metabolismo , Algoritmos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citocromo-c Peroxidasa/química , Citocromo-c Peroxidasa/genética , Citocromos c/química , Citocromos c/genética , Bases de Datos de Proteínas , Transporte de Electrón , Hemo/química , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Simulación del Acoplamiento Molecular , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Structure ; 25(8): 1222-1232.e3, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28669634

RESUMEN

Cyanobacteria and plants synthesize carotenoids via a poly-cis pathway starting with phytoene, a membrane-bound C40 hydrocarbon. Phytoene desaturase (PDS) introduces two double bonds and concomitantly isomerizes two neighboring double bonds from trans to cis. PDS assembles into homo-tetramers that interact monotopically with membranes. A long hydrophobic tunnel is proposed to function in the sequential binding of phytoene and the electron acceptor plastoquinone. The herbicidal inhibitor norflurazon binds at a plastoquinone site thereby blocking reoxidation of FADred. Comparison with the sequence-dissimilar bacterial carotene desaturase CRTI reveals substantial similarities in the overall protein fold, defining both as members of the GR2 family of flavoproteins. However, the PDS active center architecture is unprecedented: no functional groups are found in the immediate flavin vicinity that might participate in dehydrogenation and isomerization. This suggests that the isoalloxazine moiety is sufficient for catalysis. Despite mechanistic differences, an ancient evolutionary relation of PDS and CRTI is apparent.


Asunto(s)
Herbicidas/farmacología , Oxidorreductasas/química , Proteínas de Plantas/química , Piridazinas/farmacología , Carotenoides/química , Carotenoides/metabolismo , Herbicidas/química , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Oryza/enzimología , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Unión Proteica , Piridazinas/química
7.
PLoS One ; 12(11): e0187628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176862

RESUMEN

Phytoene desaturase (PDS) is an essential plant carotenoid biosynthetic enzyme and a prominent target of certain inhibitors, such as norflurazon, acting as bleaching herbicides. PDS catalyzes the introduction of two double bonds into 15-cis-phytoene, yielding 9,15,9'-tri-cis-ζ-carotene via the intermediate 9,15-di-cis-phytofluene. We present the necessary data to scrutinize functional implications inferred from the recently resolved crystal structure of Oryza sativa PDS in a complex with norflurazon. Using dynamic mathematical modeling of reaction time courses, we support the relevance of homotetrameric assembly of the enzyme observed in crystallo by providing evidence for substrate channeling of the intermediate phytofluene between individual subunits at membrane surfaces. Kinetic investigations are compatible with an ordered ping-pong bi-bi kinetic mechanism in which the carotene and the quinone electron acceptor successively occupy the same catalytic site. The mutagenesis of a conserved arginine that forms a hydrogen bond with norflurazon, the latter competing with plastoquinone, corroborates the possibility of engineering herbicide resistance, however, at the expense of diminished catalytic activity. This mutagenesis also supports a "flavin only" mechanism of carotene desaturation not requiring charged residues in the active site. Evidence for the role of the central 15-cis double bond of phytoene in determining regio-specificity of carotene desaturation is presented.


Asunto(s)
Oryza/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Biocatálisis/efectos de los fármacos , Carotenoides/química , Carotenoides/metabolismo , Cromatografía Liquida , Simulación por Computador , Pruebas de Enzimas , Cinética , Espectrometría de Masas , Modelos Moleculares , Mutación/genética , Oxidorreductasas/antagonistas & inhibidores , Multimerización de Proteína , Piridazinas/farmacología , Estereoisomerismo , Especificidad por Sustrato , Factores de Tiempo
8.
PLoS One ; 10(7): e0131717, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147209

RESUMEN

Recombinant phytoene desaturase (PDS-His6) from rice was purified to near-homogeneity and shown to be enzymatically active in a biphasic, liposome-based assay system. The protein contains FAD as the sole protein-bound redox-cofactor. Benzoquinones, not replaceable by molecular oxygen, serve as a final electron acceptor defining PDS as a 15-cis-phytoene (donor):plastoquinone oxidoreductase. The herbicidal PDS-inhibitor norflurazon is capable of arresting the reaction by stabilizing the intermediary FAD(red), while an excess of the quinone acceptor relieves this blockage, indicating competition. The enzyme requires its homo-oligomeric association for activity. The sum of data collected through gel permeation chromatography, non-denaturing polyacrylamide electrophoresis, chemical cross-linking, mass spectrometry and electron microscopy techniques indicate that the high-order oligomers formed in solution are the basis for an active preparation. Of these, a tetramer consisting of dimers represents the active unit. This is corroborated by our preliminary X-ray structural analysis that also revealed similarities of the protein fold with the sequence-inhomologous bacterial phytoene desaturase CRTI and other oxidoreductases of the GR2-family of flavoproteins. This points to an evolutionary relatedness of CRTI and PDS yielding different carotene desaturation sequences based on homologous protein folds.


Asunto(s)
Biopolímeros/química , Oryza/enzimología , Oxidorreductasas/química , Membrana Celular/enzimología , Cristalografía por Rayos X , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Electroforesis en Gel de Poliacrilamida Nativa , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA