Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1012036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457376

RESUMEN

Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection.


Asunto(s)
Cardiovirus , Infecciones por Enterovirus , Enterovirus , Picornaviridae , Humanos , Enterovirus/fisiología , Virus de la Encefalomiocarditis/fisiología , Replicación Viral , Enterovirus Humano B/fisiología , Células HeLa
2.
STAR Protoc ; 4(3): 102404, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392392

RESUMEN

In this protocol, we detail how to isolate and purify human follicular dendritic cells (FDCs) from lymphoid tissues. FDCs play a vital role in antibody development by presenting antigens to B cells in germinal centers. The assay involves enzymatic digestion and fluorescence-activated cell sorting and is successfully applied to various lymphoid tissues, including tonsils, lymph nodes, and tertiary lymphoid structures. Our robust technique enables the isolation of FDCs and facilitates downstream functional and descriptive assays. For complete details on the use and execution of this protocol, please refer to Heesters et al.1.


Asunto(s)
Células Dendríticas Foliculares , Centro Germinal , Humanos , Ganglios Linfáticos , Linfocitos B , Citometría de Flujo
3.
PLoS One ; 14(3): e0212927, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30830913

RESUMEN

BACKGROUND: HPV vaccination with the bivalent vaccine is efficacious against HPV16 and 18 infections and cross-protection against non-vaccine HPV types has been demonstrated. Here, we assessed (cross-) protective effects of the bivalent HPV16/18 vaccine on incident and persistent infections and viral load (VL) of fifteen HPV types in an observational cohort study monitoring HPV vaccine effects. METHODS: Vaginal samples were obtained annually. Type-specific VL assays were developed for HPV6,11,31 33,35,39,45,51,52,56,58,59 and 66 and used in addition to existing HPV16 and 18 assays. Rate differences of incident clearing and persistent infections were correlated with differences in VL and vaccination status. RESULTS: HPV16/18 vaccination resulted in significantly lower incidence of HPV16/18 infections and significantly lower VL in breakthrough HPV16 (p<0.01) and 18 infections (p<0.01). The effects of vaccination on non-vaccine type VL were ambiguous. Incidence and/or persistence rates of HPV31, 33, 35 and 45 were reduced in the vaccinated group. However, no significant type specific VL effects were found against HPV31, 33, 45, 52 in the vaccinated group. For HPV 6, 59 and 66 no significant reductions in numbers of incident and persistent infections were found, however borderline) VL reductions following vaccination were observed for HPV6 (p = 0.01), 59 (p = 0.10) and 66 (p = 0.03), suggesting a minor effect of the vaccine on the VL level of these HPV types. Overall, vaccination resulted in infections with slightly lower VL, irrespective of HPV type. CONCLUSIONS: In conclusion, vaccination with the bivalent HPV16/18 vaccine results in significantly reduced numbers of HPV16 and 18 incidence rates and reduced VL in breakthrough infections. Significant reductions in incident and/or persistent HPV31, 33, 35 and 45 infections were found, but no significant effect was observed on the VL for infections with these types. For the other non-vaccine HPV types no reduction in incident and/or persistent infections were found, but overall the VL tended to be somewhat lower in vaccinated women.


Asunto(s)
Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunación/métodos , Carga Viral , Adolescente , Protección Cruzada/inmunología , Femenino , Humanos , Países Bajos , Papillomaviridae/inmunología , Infecciones por Papillomavirus/sangre , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Serotipificación , Vagina/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA