Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Annu Rev Biochem ; 88: 461-485, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220974

RESUMEN

Glycosphingolipids are cell-type-specific components of the outer leaflet of mammalian plasma membranes. Gangliosides, sialic acid-containing glycosphingolipids, are especially enriched on neuronal surfaces. As amphi-philic molecules, they comprise a hydrophilic oligosaccharide chain attached to a hydrophobic membrane anchor, ceramide. Whereas glycosphingolipid formation is catalyzed by membrane-bound enzymes along the secretory pathway, degradation takes place at the surface of intralysosomal vesicles of late endosomes and lysosomes catalyzed in a stepwise fashion by soluble hydrolases and assisted by small lipid-binding glycoproteins. Inherited defects of lysosomal hydrolases or lipid-binding proteins cause the accumulation of undegradable material in lysosomal storage diseases (GM1 and GM2 gangliosidosis; Fabry, Gaucher, and Krabbe diseases; and metachromatic leukodystrophy). The catabolic processes are strongly modified by the lipid composition of the substrate-carrying membranes, and the pathological accumulation of primary storage compounds can trigger an accumulation of secondary storage compounds (e.g., small glycosphingolipids and cholesterol in Niemann-Pick disease).


Asunto(s)
Glicoesfingolípidos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Animales , Humanos , Lisosomas/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445706

RESUMEN

Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.


Asunto(s)
Fosfolípidos/biosíntesis , Esfingomielina Fosfodiesterasa/biosíntesis , Esfingomielina Fosfodiesterasa/metabolismo , Transporte Biológico , Ceramidas/metabolismo , Colesterol/metabolismo , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Lípidos de la Membrana/metabolismo , Enfermedad de Niemann-Pick Tipo A/metabolismo , Fosfolípidos/metabolismo , Esfingomielina Fosfodiesterasa/fisiología , Esfingomielinas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/fisiología
3.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272755

RESUMEN

Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann-Pick disease type A and B, and of GM2 and glucosylceramide in Niemann-Pick disease type C. Chondroitin sulfate effectively inhibits GM2 catabolism in mucopolysaccharidoses like Hurler, Hunter, Sanfilippo, and Sly syndrome and causes a secondary neuronal ganglioside GM2 accumulation, triggering neurodegeneration. Secondary ganglioside and lipid accumulation is furthermore known in many more lysosomal storage diseases, so far without known molecular basis.


Asunto(s)
Gangliósidos/metabolismo , Metabolismo de los Lípidos/fisiología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Animales , Humanos , Esfingolípidos/metabolismo
4.
J Lipid Res ; 60(6): 1099-1111, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30988135

RESUMEN

The catabolism of ganglioside GM2 is dependent on three gene products. Mutations in any of these genes result in a different type of GM2 gangliosidosis (Tay-Sachs disease, Sandhoff disease, and the B1 and AB variants of GM2 gangliosidosis), with GM2 as the major lysosomal storage compound. GM2 is also a secondary storage compound in lysosomal storage diseases such as Niemann-Pick disease types A-C, with primary storage of SM in type A and cholesterol in types B and C, respectively. The reconstitution of GM2 catabolism at liposomal surfaces carrying GM2 revealed that incorporating lipids into the GM2-carrying membrane such as cholesterol, SM, sphingosine, and sphinganine inhibits GM2 hydrolysis by ß-hexosaminidase A assisted by GM2 activator protein, while anionic lipids, ceramide, fatty acids, lysophosphatidylcholine, and diacylglycerol stimulate GM2 catabolism. In contrast, the hydrolysis of the synthetic, water-soluble substrate 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-ß-d-glucopyranoside was neither significantly affected by membrane lipids such as ceramide or SM nor stimulated by anionic lipids such as bis(monoacylglycero)phosphate added as liposomes, detergent micelles, or lipid aggregates. Moreover, hydrolysis-inhibiting lipids also had an inhibiting effect on the solubilization and mobilization of membrane-bound lipids by the GM2 activator protein, while the stimulating lipids enhanced lipid mobilization.


Asunto(s)
Proteína Activadora de G (M2)/metabolismo , Lípidos de la Membrana/metabolismo , Colesterol/metabolismo , Proteína Activadora de G (M2)/genética , Gangliósido G(M2)/metabolismo , Gangliósidos/metabolismo , Humanos , Liposomas/metabolismo , Lisofosfolípidos/metabolismo , Lípidos de la Membrana/genética , Monoglicéridos/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Esfingolípidos/metabolismo , Esfingomielinas/metabolismo , Esfingosina/metabolismo , Ácidos Esteáricos/metabolismo
5.
Biol Chem ; 401(1): 31-46, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31408430

RESUMEN

Drug-induced phospholipidosis is a lysosomal storage disorder characterized by excessive accumulation of phospholipids. Its cellular mechanism is still not well understood, but it is known that cationic amphiphilic drugs can induce it. These drugs have a hydrophilic amine head group that can be protonated in the endolysosomal compartment. As cationic amphiphiles, they are trapped in lysosomes, where they interfere with negatively charged intralysosomal vesicles, the major platforms of cellular sphingolipid degradation. Metabolic principles observed in sphingolipid and phospholipid catabolism and inherited sphingolipidoses are of great importance for lysosomal function and physiological lipid turnover at large. Therefore, we also propose intralysosomal vesicles as major platforms for degradation of lipids and phospholipids reaching them by intracellular pathways like autophagy and endocytosis. Phospholipids are catabolized as components of vesicle surfaces by protonated, positively charged phospholipases, electrostatically attracted to the negatively charged vesicles. Model experiments suggest that progressively accumulating cationic amphiphilic drugs inserting into the vesicle membrane with their hydrophobic molecular moieties disturb and attenuate the main mechanism of lipid degradation as discussed here. By compensating the negative surface charge, cationic enzymes are released from the surface of vesicles and proteolytically degraded, triggering a progressive lipid storage and the formation of inactive lamellar bodies.


Asunto(s)
Metabolismo de los Lípidos/genética , Enfermedades por Almacenamiento Lisosomal/genética , Fosfolípidos/metabolismo , Esfingolipidosis/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Lípidos/genética , Enfermedades por Almacenamiento Lisosomal/inducido químicamente , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/genética , Lisosomas/metabolismo , Orgánulos/metabolismo , Fosfolípidos/genética , Esfingolipidosis/inducido químicamente , Esfingolipidosis/metabolismo , Esfingolipidosis/patología
6.
Mol Genet Metab ; 128(1-2): 75-83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31097363

RESUMEN

The catabolism of ganglioside GM2 is dependent on the lysosomal enzyme ß-hexosaminidase A and a supporting lipid transfer protein, the GM2 activator protein. A genetically based disturbance of GM2 catabolism, leads to several subtypes of the GM2 gangliosidosis: Tay-Sachs disease, Sandhoff disease, the AB-variant and the B1-variant, all of them having GM2 as major lysosomal storage compound. Further on it is known that the gangliosides GM2 and GM3 accumulate as secondary storage compounds in mucopolysaccharidoses, especially in Hunter disease, Hurler disease, Sanfilippo disease and Sly syndrome, with chondroitin sulfate as primary storage compound. The exact mechanism of ganglioside accumulation in mucopolysaccaridoses is still a matter of debate. Here, we show that chondroitin sulfate strongly inhibits the catabolism of membrane-bound GM2 by ß-hexosaminidase A in presence of GM2 activator protein in vitro already at low micromolar concentrations. In contrast, hyaluronan, the major storage compound in mucopolysaccharidosis IX, a milder disease without secondary ganglioside accumulation, is a less effective inhibitor. On the other hand, hydrolysis of micellar-bound GM2 by ß-hexosaminidase A without the assistance of GM2AP was not impeded by chondroitin sulfate implicating that the inhibition of GM2 hydrolysis by chondroitin sulfate is most likely based on an interaction with GM2AP, the GM2AP-GM2 complex or the GM2-carrying membranes. We also studied the influence of some cationic amphiphilic drugs (desipramine, chlorpromazine, imipramine and chloroquine), provoking drug induced phospholipidosis and found that all of them inhibited the hydrolysis of GM2 massively.


Asunto(s)
Gangliósido G(M2)/antagonistas & inhibidores , Gangliósido G(M2)/metabolismo , Mucopolisacaridosis/fisiopatología , Tensoactivos/farmacología , Cationes/química , Sulfatos de Condroitina/farmacología , Glicosaminoglicanos/farmacología , Humanos , Hidrólisis/efectos de los fármacos
7.
J Biol Chem ; 292(15): 6177-6189, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28258214

RESUMEN

The lysosomal acid ß-glucosidase GBA1 and the non-lysosomal ß-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of ß-glucosidase activity in general.


Asunto(s)
Regulación hacia Abajo , Enfermedad de Gaucher/enzimología , Regulación Enzimológica de la Expresión Génica , Modelos Biológicos , Esfingosina/metabolismo , beta-Glucosidasa/biosíntesis , Animales , Línea Celular , Enfermedad de Gaucher/genética , Glucosilceramidasa , Glucosilceramidas/genética , Glucosilceramidas/metabolismo , Humanos , Masculino , Ratones , Esfingosina/genética , beta-Glucosidasa/genética
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 734-749, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29653252

RESUMEN

The replacement of two consecutive histidine residues by alanine residues in the catalytic center of ceramide synthase 2 in a new transgenic mouse mutant (CerS2 H/A) leads to inactivation of catalytic activity and reduces protein level to 60% of the WT level. We show here by qRT-PCR and transcriptome analyses that several transcripts of genes involved in lipid metabolism and cell division are differentially regulated in livers of CerS2 H/A mice. Thus, very long chain ceramides produced by CerS2 are required for transcriptional regulation of target genes. The hepatocellular carcinomata previously described in old CerS2 KO mice were already present in 8-week-old CerS2 H/A animals and thus are caused by the loss of CerS2 catalytic activity already during early life.


Asunto(s)
Carcinoma Hepatocelular/genética , División Celular/genética , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/genética , Esfingosina N-Aciltransferasa/genética , Factores de Edad , Animales , Carcinoma Hepatocelular/patología , Ceramidas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Esfingosina N-Aciltransferasa/metabolismo
9.
PLoS Genet ; 11(3): e1005063, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25803043

RESUMEN

Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/genética , Glucosilceramidas/genética , Metabolismo de los Lípidos/genética , beta-Glucosidasa/genética , Actinas/química , Animales , Membrana Celular/metabolismo , Membrana Celular/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Fibroblastos/metabolismo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patología , Seudópodos/genética , Seudópodos/metabolismo , Seudópodos/patología , Células de Sertoli/metabolismo , Células de Sertoli/patología , beta-Glucosidasa/metabolismo
10.
J Lipid Res ; 58(3): 563-577, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28126847

RESUMEN

Glucosylceramide (GlcCer) is the primary storage lipid in the lysosomes of Gaucher patients and a secondary one in Niemann-Pick disease types A, B, and C. The regulatory roles of lipids on the hydrolysis of membrane bound GlcCer by lysosomal ß-glucocerebrosidase (GBA1) was probed using a detergent-free liposomal assay. The degradation rarely occurs at uncharged liposomal surfaces in the absence of saposin (Sap) C. However, anionic lipids stimulate GlcCer hydrolysis at low pH by up to 1,000-fold depending on the nature and position of the negative charges in their head groups while cationic lipids inhibit the degradation, thus showing the importance of electrostatic interactions between the polycationic GBA1 and the negatively charged vesicle surfaces at low pH. Ceramide, fatty acids, monoacylglycerol, and diacylglycerol also stimulate GlcCer hydrolysis while SM, sphingosine, and sphinganine play strong inhibitory roles, thereby explaining the secondary storage of GlcCer in Niemann-Pick diseases. Surprisingly, cholesterol stimulates GlcCer degradation in the presence of bis(monoacylglycero)phosphate (BMP). Sap C strongly stimulates GlcCer hydrolysis even in the absence of BMP and the regulatory roles of the intraendolysosomal lipids on its activity is discussed. Our data suggest that these strong modifiers of GlcCer hydrolysis affect the genotype-phenotype correlation in several cases of Gaucher patients independent of the types.


Asunto(s)
Enfermedad de Gaucher/metabolismo , Glucosilceramidasa/genética , Glucosilceramidas/metabolismo , Enfermedades de Niemann-Pick/metabolismo , Colesterol/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Estudios de Asociación Genética , Glucosilceramidasa/metabolismo , Humanos , Hidrólisis , Metabolismo de los Lípidos/genética , Lisofosfolípidos/metabolismo , Lisosomas/enzimología , Monoglicéridos/metabolismo , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/patología , Saposinas/metabolismo
11.
Angew Chem Int Ed Engl ; 56(19): 5252-5257, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28378443

RESUMEN

The main glycoforms of the hydrophobic lysosomal glycoprotein saposin D (SapD) were synthesized by native chemical ligation. An approach for the challenging solid-phase synthesis of the fragments was developed. Three SapD glycoforms were obtained following a general and robust refolding and purification protocol. A crystal structure of one glycoform confirmed its native structure and disulfide pattern. Functional assays revealed that the lipid-binding properties of three SapD glycoforms are highly affected by the single sugar moiety of SapD showing a dependency of the size and the type of N-glycan.


Asunto(s)
Carbohidratos/química , Saposinas/síntesis química , Saposinas/metabolismo , Conformación de Carbohidratos , Glicosilación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Saposinas/química
12.
Biol Chem ; 403(2): 251, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706402
13.
J Lipid Res ; 56(10): 1861-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26269359

RESUMEN

A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.


Asunto(s)
Éteres de Glicerilo/metabolismo , Fusión de Membrana/fisiología , Lípidos de la Membrana/metabolismo , Animales , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Éteres de Glicerilo/química , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Lípidos de la Membrana/química , Esfingolípidos/química , Esfingolípidos/metabolismo , Porcinos , Thermoplasma/metabolismo
14.
J Lipid Res ; 56(9): 1747-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26175473

RESUMEN

Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with ß-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.


Asunto(s)
Proteína Activadora de G (M2)/metabolismo , Gangliósido G(M2)/metabolismo , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Ceramidas/metabolismo , Colesterol/genética , Colesterol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteína Activadora de G (M2)/genética , Células HEK293 , Humanos , Hidrólisis/efectos de los fármacos , Lisofosfolípidos/administración & dosificación , Lípidos de la Membrana/genética , Monoglicéridos/administración & dosificación , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Esfingomielinas/metabolismo , Resonancia por Plasmón de Superficie , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/patología , Cadena alfa de beta-Hexosaminidasa/metabolismo
15.
Biochim Biophys Acta ; 1841(3): 441-52, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23954553

RESUMEN

The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-ß-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the "collodion baby" in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Asunto(s)
Epidermis/metabolismo , Glucosilceramidas/metabolismo , Membranas Intracelulares/metabolismo , Metabolismo de los Lípidos/fisiología , Animales , Glucosilceramidas/genética , Glicosilación , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Ácido Linoleico/metabolismo , Permeabilidad
16.
J Lipid Res ; 55(12): 2606-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25339683

RESUMEN

During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion.


Asunto(s)
Colesterol/metabolismo , Endosomas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Bovinos , Endocitosis , Endosomas/química , Endosomas/enzimología , Humanos , Hidrólisis , Membrana Dobles de Lípidos/química , Micelas , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Proteínas Recombinantes/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/química , Liposomas Unilamelares , Regulación hacia Arriba
17.
Nat Cell Biol ; 9(4): 461-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17351639

RESUMEN

The kinase IKK1 (also known as IKKalpha) was previously reported to regulate epidermal development and skeletal morphogenesis by acting in keratinocytes to induce their differentiation in an NF-kappaB independent manner. Here, we show that mice with epidermal keratinocyte-specific IKK1 ablation (hereafter referred to as IKK1(EKO)) develop a normally differentiated stratified epidermis, demonstrating that the function of IKK1 in inducing epidermal differentiation is not keratinocyte-autonomous. Despite normal epidermal stratification, the IKK1(EKO) mice display impaired epidermal-barrier function and increased transepidermal water loss, due to defects in stratum corneum lipid composition and in epidermal tight junctions. These defects are caused by the deregulation of retinoic acid target genes, encoding key lipid modifying enzymes and tight junction proteins, in the IKK1-deficient epidermis. Furthermore, we show that IKK1-deficient cells display impaired retinoic acid-induced gene transcription, and that IKK1 is recruited to the promoters of retinoic acid-regulated genes, suggesting that one mechanism by which IKK1 controls epidermal-barrier formation is by regulating the expression of retinoic acid receptor target genes in keratinocytes.


Asunto(s)
Diferenciación Celular/fisiología , Epidermis/metabolismo , Quinasa I-kappa B/metabolismo , Queratinocitos/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Células Epidérmicas , Epidermis/ultraestructura , Femenino , Miembro Anterior/anomalías , Miembro Anterior/irrigación sanguínea , Miembro Anterior/metabolismo , Perfilación de la Expresión Génica , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Queratinocitos/citología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades de la Piel/genética , Enfermedades de la Piel/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología
18.
EMBO J ; 28(23): 3706-16, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19834458

RESUMEN

Ceramide synthases are highly conserved transmembrane proteins involved in the biosynthesis of sphingolipids, which are essential structural components of eukaryotic membranes and can act as second messengers regulating tissue homeostasis. However, the role of these enzymes in development is poorly understood due to the lack of animal models. We identified schlank as a new Drosophila member of the ceramide synthase family. We demonstrate that schlank is involved in the de novo synthesis of a broad range of ceramides, the key metabolites of sphingolipid biosynthesis. Unexpectedly, schlank mutants also show reduction of storage fat, which is deposited as triacylglyerols in the fat body. We found that schlank can positively regulate fatty acid synthesis by promoting the expression of sterol-responsive element-binding protein (SREBP) and SREBP-target genes. It further prevents lipolysis by downregulating the expression of triacylglycerol lipase. Our results identify schlank as a new regulator of the balance between lipogenesis and lipolysis in Drosophila. Furthermore, our studies of schlank and the mammalian Lass2 family member suggest a novel role for ceramide synthases in regulating body fat metabolism.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Familia de Multigenes/fisiología , Oxidorreductasas/fisiología , Tejido Adiposo/enzimología , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia Conservada , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Lipogénesis/fisiología , Lipólisis/fisiología , Masculino , Oxidorreductasas/genética
19.
J Neurosci ; 31(5): 1837-49, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21289194

RESUMEN

Deposition of amyloid ß peptides (Aßs) in extracellular amyloid plaques within the human brain is a hallmark of Alzheimer's disease (AD). Aß derives from proteolytic processing of the amyloid precursor protein (APP) by ß- and γ-secretases. The initial cleavage by ß-secretase results in shedding of the APP ectodomain and generation of APP C-terminal fragments (APP-CTFs), which can then be further processed within the transmembrane domain by γ-secretase, resulting in release of Aß. Here, we demonstrate that accumulation of sphingolipids (SLs), as occurs in lysosomal lipid storage disorders (LSDs), decreases the lysosome-dependent degradation of APP-CTFs and stimulates γ-secretase activity. Together, this results in increased generation of both intracellular and secreted Aß. Notably, primary fibroblasts from patients with different SL storage diseases show strong accumulation of potentially amyloidogenic APP-CTFs. By using biochemical, cell biological, and genetic approaches, we demonstrate that SL accumulation affects autophagic flux and impairs the clearance of APP-CTFs. Thus, accumulation of SLs might not only underlie the pathogenesis of LSDs, but also trigger increased generation of Aß and contribute to neurodegeneration in sporadic AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Fibroblastos/metabolismo , Lisosomas/metabolismo , Esfingolípidos/metabolismo , Animales , Western Blotting , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/ultraestructura , Inmunohistoquímica , Lisosomas/genética , Lisosomas/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica , Fragmentos de Péptidos/metabolismo , Esfingolípidos/genética , Transfección
20.
J Cell Mol Med ; 15(2): 280-95, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19929948

RESUMEN

The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein-2 (LAMP-2) and LAMP-1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP-1 and LAMP-2 (LAMP(-/-)), low-density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild-type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP(-/-) cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP-2 deficient liver and that overexpression of LAMP-2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP-2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP(-/-) cells was diminished by overexpression of any of the three isoforms of LAMP-2, but not by LAMP-1. The LAMP-2 luminal domain, the membrane-proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP-2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone-mediated autophagy function of LAMP-2.


Asunto(s)
Colesterol/metabolismo , Endosomas/metabolismo , Lipoproteínas LDL/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Androstenos/farmacología , Animales , Transporte Biológico , Línea Celular , Retículo Endoplásmico/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/química , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/deficiencia , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Estructura Terciaria de Proteína , Receptores de LDL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA