RESUMEN
The use of loss on ignition (LOI) measurements of soil organic matter (SOM) to estimate soil organic carbon (OC) content is a decades-old practice. While there are limitations and uncertainties to this approach, it continues to be necessary for many coastal wetlands researchers and conservation practitioners without access to an elemental analyzer. Multiple measurement, reporting, and verification (MRV) standards recognize the need (and uncertainty) for using this method. However, no framework exists to explain the substantial differences among equations that relate SOM to OC; consequently, equation selection can be a haphazard process leading to widely divergent and inaccurate estimates. To address this lack of clarity, we used a dataset of 1,246 soil samples from 17 mangrove regions in North, Central, and South America, and calculated SOM to OC conversion equations for six unique types of coastal environmental setting. A framework is provided for understanding differences and selecting an equation based on a study region's SOM content and whether mineral sediments are primarily terrigenous or carbonate in origin. This approach identifies the positive dependence of conversion equation slopes on regional mean SOM content and indicates a distinction between carbonate settings with mean (± 1 S.E.) OC:SOM of 0.47 (0.002) and terrigenous settings with mean OC:SOM of 0.32 (0.018). This framework, focusing on unique coastal environmental settings, is a reminder of the global variability in mangrove soil OC content and encourages continued investigation of broadscale factors that contribute to soil formation and change in blue carbon settings. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01698-z.
RESUMEN
Everglades National Park (ENP) has been documenting fire events since 1948, and these data have been incorporated into an ESRI geodatabase. According to this geodatabase, 757,078â¯ha of wetlands burned from 1948 to 2011. The main type of vegetation that has burned is comprised of palustrine and estuarine wetlands. However, there are areas in ENP that are comprised of these wetlands that have no documented fire events. We examined fossil charcoal in soil cores and found evidence that fires did indeed occur in some of these areas. Sites of known fires were used to validate the fossil charcoal method. The abundance of fossil charcoal in soil cores from six locations in ENP was measured. Two of the cores were taken from areas with well-documented fire events and four cores where taken from areas with no documented fire events. Three of the cores were dated using 210Pb geochronology. The initial goal was to determine if fires had gone undetected or undocumented in the geodatabase with the ultimate goal being to demonstrate the usefulness of this approach to augment the geodatabase and therefore enhance our understanding of fire ecology in ENP.
Asunto(s)
Carbón Orgánico , Incendios , Ecosistema , Parques Recreativos , Suelo , HumedalesRESUMEN
There is concern that accelerating sea-level rise will exceed the vertical growth capacity of coastal-wetland substrates in many regions by the end of this century. Vertical vulnerability estimates rely on measurements of accretion and/or surface-elevation-change derived from soil cores and/or surface elevation tables (SETs). To date there has not been a broad examination of whether the multiple timescales represented by the processes of accretion and elevation change are equally well-suited for quantifying the trajectories of wetland vertical change in coming decades and centuries. To examine the potential for timescale bias in assessments of vertical change, we compared rates of accretion and surface elevation change using data derived from a review of the literature. In the first approach, average rates of elevation change were compared with timescale-averaged accretion rates from six regions around the world where sub-decadal, decadal, centennial, and millennial timescales were represented. Second, to isolate spatial variability, temporal comparisons were made for regionally unique environmental categories within each region. Last, comparisons were made of records from sites where SET-MH stations and radiometric measurements were co-located in close proximity. We find that rates vary significantly as a function of measurement timescale and that the pattern and magnitude of variation between timescales are location-specific. Failure to identify and account for temporal variability in rates will produce biased assessments of the vertical change capacity of coastal wetlands. Robust vulnerability assessments should combine accretion rates from multiple timescales with the longest available SET record to provide long-term context for ongoing monitoring observations and projections.
RESUMEN
Coastal wetlands are susceptible to loss in both health and extent via stressors associated with global climate change and anthropogenic disturbance. Peat collapse may represent an additional phenomenon contributing to coastal wetland loss in organic-rich soils through rapid vertical elevation decline. However, the term "peat collapse" has been inconsistently used in the literature, leading to ambiguities regarding the mechanisms, timing, and spatial extent of its contribution to coastal wetland loss. For example, it is unclear whether peat collapse is distinct from general subsidence, or what biogeochemical changes or sequence of events may constitute peat collapse. A critical analysis of peer-reviewed literature related to peat collapse was supplemented with fundamental principles of soil physics and biogeochemistry to develop a conceptual framework for coastal wetland peat collapse. We propose that coastal wetland peat collapse is a specific type of shallow subsidence unique to highly organic soils in which a loss of soil strength and structural integrity contributes to a decline in elevation, over the course of a few months to a few years, below the lower limit for emergent plant growth and natural recovery. We further posit that coastal wetland peat collapse is driven by severe stress or death of the vegetation, which compromises the supportive structure roots provide to low-density organic soils and shifts the carbon balance of the ecosystem toward a net source, as mineralization is no longer offset by sequestration. Under these conditions, four mechanisms may contribute to peat collapse: (1) compression of gas-filled pore spaces within the soil during dry-down conditions; (2) deconsolidation of excessively waterlogged peat, followed by transport; (3) compaction of aerenchyma tissue in wetland plant roots, and possibly collapse of root channels; and (4) acceleration of soil mineralization due to the addition of labile carbon (dying roots), oxygen (decreased flooding), nutrients (eutrophication), or sulfate (saltwater intrusion). Scientists and land managers should focus efforts on monitoring vegetation health across the coastal landscape as an indicator for peat collapse vulnerability and move toward codifying the term "peat collapse" in the scientific literature. Once clarified, the contribution of peat collapse to coastal wetland loss can be evaluated.
Asunto(s)
Suelo , Humedales , Carbono , Cambio Climático , EcosistemaRESUMEN
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMEN
Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m-3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.
RESUMEN
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.
Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/normas , Agua de Mar , Humedales , Alabama , Monitoreo del Ambiente/métodos , Florida , Golfo de México , Servicios de Información/organización & administración , Servicios de Información/normas , Louisiana , Mississippi , Proyectos de Investigación/normas , Muestreo , TexasRESUMEN
Two sediment cores were collected in a mangrove forest to construct geochronologies for the previous century using natural and anthropogenic radionuclide tracers. Both sediment cores were dated using (239+240)Pu global fallout signatures as well as (210)Pb, applying both the Constant Initial Concentration (CIC) and the Constant Rate of Supply (CRS) models. The (239+240)Pu and CIC model are interpreted as having comparable sediment accretion rates (SAR) below an apparent mixed region in the upper â¼5 to 10 cm. In contrast, the CRS dating method shows high sediment accretion rates in the uppermost intervals, which is substantially reduced over the lower intervals of the 100-year record. A local anthropogenic nutrient signal is reflected in the high total phosphorus (TP) concentration in younger sediments. The carbon/nitrogen molar ratios and δ(15)N values further support a local anthropogenic nutrient enrichment signal. The origin of these signals is likely the treated sewage discharge to Moreton Bay which began in the early 1970s. While the (239+240)Pu and CIC models can only produce rates averaged over the intervals of interest within the profile, the (210)Pb CRS model identifies elevated rates of sediment accretion, organic carbon (OC), nitrogen (N), and TP burial from 2000 to 2013. From 1920 to 2000, the three dating methods provide similar OC, N and TP burial rates, â¼150, 10 and 2 g m(-2) year(-1), respectively, which are comparable to global averages.