Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nature ; 575(7783): 500-504, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723261

RESUMEN

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Asunto(s)
Organismos Acuáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes y Vías Metabólicas , Proteobacteria/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Aldehído-Liasas/metabolismo , Organismos Acuáticos/enzimología , Ácido Aspártico/metabolismo , Biocatálisis , Glioxilatos/metabolismo , Hidroliasas/metabolismo , Cinética , Oxidorreductasas/metabolismo , Fitoplancton/enzimología , Fitoplancton/metabolismo , Proteobacteria/enzimología , Transaminasas/metabolismo
2.
Annu Rev Microbiol ; 73: 313-334, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31180805

RESUMEN

The cytoplasm of bacterial cells is a highly crowded cellular compartment that possesses considerable osmotic potential. As a result, and owing to the semipermeable nature of the cytoplasmic membrane and the semielastic properties of the cell wall, osmotically driven water influx will generate turgor, a hydrostatic pressure considered critical for growth and viability. Both increases and decreases in the external osmolarity inevitably trigger water fluxes across the cytoplasmic membrane, thus impinging on the degree of cellular hydration, molecular crowding, magnitude of turgor, and cellular integrity. Here, we assess mechanisms that permit the perception of osmotic stress by bacterial cells and provide an overview of the systems that allow them to genetically and physiologically cope with this ubiquitous environmental cue. We highlight recent developments implicating the secondary messenger c-di-AMP in cellular adjustment to osmotic stress and the role of osmotic forces in the life of bacteria-assembled in biofilms.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/metabolismo , Exposición a Riesgos Ambientales , Osmorregulación , Presión Osmótica , Adaptación Fisiológica
3.
Bioessays ; 44(5): e2200009, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35289951

RESUMEN

Biofilms can be viewed as tissue-like structures in which microorganisms are organized in a spatial and functional sophisticated manner. Biofilm formation requires the orchestration of a highly integrated network of regulatory proteins to establish cell differentiation and production of a complex extracellular matrix. Here, we discuss the role of the essential Bacillus subtilis biofilm activator RemA. Despite intense research on biofilms, RemA is a largely underappreciated regulatory protein. RemA forms donut-shaped octamers with the potential to assemble into dimeric superstructures. The presumed DNA-binding mode suggests that RemA organizes its target DNA into nucleosome-like structures, which are the basis for its role as transcriptional activator. We discuss how RemA affects gene expression in the context of biofilm formation, and its regulatory interplay with established components of the biofilm regulatory network, such as SinR, SinI, SlrR, and SlrA. We emphasize the additional role of RemA played in nitrogen metabolism and osmotic-stress adjustment.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Lepidópteros , Animales , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Factores de Transcripción/metabolismo
4.
Environ Microbiol ; 24(11): 5306-5331, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104950

RESUMEN

Ectoine and its derivative hydroxyectoine are widely synthesized or imported by bacteria to fend off the detrimental effects of high osmolarity on cellular hydration and growth. Genes that are connected to a particular physiological process are often found in the same genomic context. We exploited this feature in a comprehensive bioinformatical analysis of 1103 ectoine biosynthetic gene clusters from Bacteria and Archaea through which we identified 415 ect operons that colocalize with genes encoding potential osmolyte transporters. These belong to various importer families. Focusing on the complex ect gene clusters of the alpha-proteobacteria Hyphomonas neptunium and Novoshingobium sp. LH128, we analysed several transporters with respect to their substrate specificities through physiological, molecular and modelling approaches. Accordingly, we identified an MFS-type uptake system specific for ectoines (EctU) and a novel SSS-type ectoine/hydroxyectoine importer (EctI) with a broader substrate profile for osmostress protectants. Furthermore, some ect gene clusters encode a MscS/YbdG-type mechanosensitive channel protein, whose functionality was assessed through down-shock assays. Moreover, our analysis identified the gene for the first putative ectoine/hydroxyectoine-specific efflux system (EctX), a member of the MFS superfamily. Our findings make substantial contributions to the understanding of the ecophysiology of ectoines, key players in microbial osmostress adjustment systems.


Asunto(s)
Aminoácidos Diaminos , Proteínas Bacterianas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Aminoácidos Diaminos/genética , Aminoácidos Diaminos/metabolismo , Familia de Multigenes , Proteínas de Transporte de Membrana/genética , Archaea/genética , Bacterias/genética
5.
Environ Microbiol ; 24(3): 1499-1517, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35106888

RESUMEN

Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrhoeas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt-stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of l-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress.


Asunto(s)
Clostridioides difficile , Salinidad , Adaptación Fisiológica , Betaína/metabolismo , Prolina/metabolismo
6.
J Biol Chem ; 295(27): 9087-9104, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32404365

RESUMEN

When faced with increased osmolarity in the environment, many bacterial cells accumulate the compatible solute ectoine and its derivative 5-hydroxyectoine. Both compounds are not only potent osmostress protectants, but also serve as effective chemical chaperones stabilizing protein functionality. Ectoines are energy-rich nitrogen and carbon sources that have an ecological impact that shapes microbial communities. Although the biochemistry of ectoine and 5-hydroxyectoine biosynthesis is well understood, our understanding of their catabolism is only rudimentary. Here, we combined biochemical and structural approaches to unravel the core of ectoine and 5-hydroxy-ectoine catabolisms. We show that a conserved enzyme bimodule consisting of the EutD ectoine/5-hydroxyectoine hydrolase and the EutE deacetylase degrades both ectoines. We determined the high-resolution crystal structures of both enzymes, derived from the salt-tolerant bacteria Ruegeria pomeroyi and Halomonas elongata These structures, either in their apo-forms or in forms capturing substrates or intermediates, provided detailed insights into the catalytic cores of the EutD and EutE enzymes. The combined biochemical and structural results indicate that the EutD homodimer opens the pyrimidine ring of ectoine through an unusual covalent intermediate, N-α-2 acetyl-l-2,4-diaminobutyrate (α-ADABA). We found that α-ADABA is then deacetylated by the zinc-dependent EutE monomer into diaminobutyric acid (DABA), which is further catabolized to l-aspartate. We observed that the EutD-EutE bimodule synthesizes exclusively the α-, but not the γ-isomers of ADABA or hydroxy-ADABA. Of note, α-ADABA is known to induce the MocR/GabR-type repressor EnuR, which controls the expression of many ectoine catabolic genes clusters. We conclude that hydroxy-α-ADABA might serve a similar function.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Osmorregulación/fisiología , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Regulación Bacteriana de la Expresión Génica/genética , Halomonas/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/ultraestructura , Hidrolasas/metabolismo , Hidrolasas/ultraestructura , Chaperonas Moleculares/metabolismo , Familia de Multigenes , Rhodobacteraceae/metabolismo
7.
J Biol Chem ; 295(9): 2822-2838, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31969391

RESUMEN

Ectoine is a solute compatible with the physiologies of both prokaryotic and eukaryotic cells and is widely synthesized by bacteria as an osmotic stress protectant. Because it preserves functional attributes of proteins and macromolecular complexes, it is considered a chemical chaperone and has found numerous practical applications. However, the mechanism of its biosynthesis is incompletely understood. The second step in ectoine biosynthesis is catalyzed by l-2,4-diaminobutyrate acetyltransferase (EctA; EC 2.3.1.178), which transfers the acetyl group from acetyl-CoA to EctB-formed l-2,4-diaminobutyrate (DAB), yielding N-γ-acetyl-l-2,4-diaminobutyrate (N-γ-ADABA), the substrate of ectoine synthase (EctC). Here, we report the biochemical and structural characterization of the EctA enzyme from the thermotolerant bacterium Paenibacillus lautus (Pl). We found that (Pl)EctA forms a homodimer whose enzyme activity is highly regiospecific by producing N-γ-ADABA but not the ectoine catabolic intermediate N-α-acetyl-l-2,4-diaminobutyric acid. High-resolution crystal structures of (Pl)EctA (at 1.2-2.2 Å resolution) (i) for its apo-form, (ii) in complex with CoA, (iii) in complex with DAB, (iv) in complex with both CoA and DAB, and (v) in the presence of the product N-γ-ADABA were obtained. To pinpoint residues involved in DAB binding, we probed the structure-function relationship of (Pl)EctA by site-directed mutagenesis. Phylogenomics shows that EctA-type proteins from both Bacteria and Archaea are evolutionarily highly conserved, including catalytically important residues. Collectively, our biochemical and structural findings yielded detailed insights into the catalytic core of the EctA enzyme that laid the foundation for unraveling its reaction mechanism.


Asunto(s)
Acetiltransferasas/química , Aminoácidos Diaminos/biosíntesis , Proteínas Bacterianas/química , Dominio Catalítico , Paenibacillus/química , Cristalografía por Rayos X , Dimerización , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad
8.
PLoS Biol ; 16(2): e2005163, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29394244

RESUMEN

The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the "salt-in" strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the "salt-out" strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress-responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.


Asunto(s)
Archaea/fisiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Genes Arqueales , Genes Bacterianos , Salinidad , Estrés Salino/genética , Aminoácidos Diaminos/metabolismo , Archaea/genética , Archaea/metabolismo , Bacterias/metabolismo , Betaína/metabolismo , Transporte Biológico , Inositol/metabolismo , Intrones , Modelos Biológicos , Presión Osmótica , Filogenia , Transcripción Genética
9.
Environ Microbiol ; 22(8): 3266-3286, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32419322

RESUMEN

The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Betaína/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Proteoma , Salinidad , Cloruro de Sodio/farmacología
10.
Biol Chem ; 401(12): 1443-1468, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32755967

RESUMEN

Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Bacterias/metabolismo , Hidroliasas/metabolismo , Chaperonas Moleculares/metabolismo , Nutrientes/metabolismo , Aminoácidos Diaminos/química , Hidroliasas/química , Chaperonas Moleculares/química , Estructura Molecular , Nutrientes/química , Presión Osmótica
11.
Mol Microbiol ; 104(5): 761-780, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28256787

RESUMEN

The ABC-transporters OpuB and OpuC from Bacillus subtilis function as osmoprotectant import systems. Their structural genes have most likely evolved through a duplication event but the two transporters are remarkably different in their substrate profile. OpuB possesses narrow substrate specificity, while OpuC is promiscuous. We assessed the functionality of hybrids between these two ABC-transporters by reciprocally exchanging the coding regions for the OpuBC and OpuCC substrate-binding proteins between the corresponding opuB and opuC operons. Substantiating the critical role of the binding protein in setting the substrate specificity of ABC transporters, OpuB::OpuCC turned into a promiscuous system, while OpuC::OpuBC now exhibited narrow substrate specificity. Both hybrid transporters possessed a high affinity for their substrates but the transport capacity of the OpuB::OpuCC system was moderate due to the synthesis of only low amounts of the xenogenetic OpuCC protein. Suppressor mutations causing single amino acid substitutions in the GbsR repressor controlling the choline to glycine betaine biosynthesis pathway greatly improved OpuB::OpuCC-mediated compatible solute import through transcriptional up-regulation of the hybrid opuB::opuCC operon. Collectively, we demonstrate for the first time that one can synthetically switch the substrate specificity of a given ABC transporter by combining its core components with a xenogenetic ligand-binding protein.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Betaína/metabolismo , Colina/metabolismo , Operón , Osmorregulación , Especificidad por Sustrato , Transcripción Genética , Regulación hacia Arriba
12.
Environ Microbiol ; 20(1): 305-323, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29159878

RESUMEN

Arsenic, a highly cytotoxic and cancerogenic metalloid, is brought into the biosphere through geochemical sources and anthropogenic activities. A global biogeochemical arsenic biotransformation cycle exists in which inorganic arsenic species are transformed into organoarsenicals, which are subsequently mineralized again into inorganic arsenic compounds. Microorganisms contribute to this biotransformation process greatly and one of the organoarsenicals synthesized and degraded in this cycle is arsenobetaine. Its nitrogen-containing homologue glycine betaine is probably the most frequently used compatible solute on Earth. Arsenobetaine is found in marine and terrestrial habitats and even in deep-sea hydrothermal vent ecosystems. Despite its ubiquitous occurrence, the biological function of arsenobetaine has not been comprehensively addressed. Using Bacillus subtilis as a well-understood platform for the study of microbial osmostress adjustment systems, we ascribe here to arsenobetaine both a protective function against high osmolarity and a cytoprotective role against extremes in low and high growth temperatures. We define a biosynthetic route for arsenobetaine from the precursor arsenocholine that relies on enzymes and genetic regulatory circuits for glycine betaine formation from choline, identify the uptake systems for arsenobetaine and arsenocholine, and describe crystal structures of ligand-binding proteins from the OpuA and OpuB ABC transporters complexed with either arsenobetaine or arsenocholine.


Asunto(s)
Arsenicales/metabolismo , Bacillus subtilis/metabolismo , Presión Osmótica , Temperatura , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Biotransformación , Colina/metabolismo , Citoprotección , Concentración Osmolar
13.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30097444

RESUMEN

The accumulation of compatible solutes is a common defense of bacteria against the detrimental effects of high osmolarity. Uptake systems for these compounds are cornerstones in cellular osmostress responses because they allow the energy-preserving scavenging of osmostress protectants from environmental sources. Bacillus subtilis is well studied with respect to the import of compatible solutes and its five transport systems (OpuA, OpuB, OpuC, OpuD, and OpuE), for these stress protectants have previously been comprehensively studied. Building on this knowledge and taking advantage of the unabated appearance of new genome sequences of members of the genus Bacillus, we report here the discovery, physiological characterization, and phylogenomics of a new member of the Opu family of transporters, OpuF (OpuFA-OpuFB). OpuF is not present in B. subtilis but it is widely distributed in members of the large genus Bacillus OpuF is a representative of a subgroup of ATP-binding cassette (ABC) transporters in which the substrate-binding protein (SBP) is fused to the transmembrane domain (TMD). We studied the salient features of the OpuF transporters from Bacillus infantis and Bacillus panaciterrae by functional reconstitution in a B. subtilis chassis strain lacking known Opu transporters. A common property of the examined OpuF systems is their substrate profile; OpuF mediates the import of glycine betaine, proline betaine, homobetaine, and the marine osmolyte dimethylsulfoniopropionate (DMSP). An in silico model of the SBP domain of the TMD-SBP hybrid protein OpuFB was established. It revealed the presence of an aromatic cage, a structural feature commonly present in ligand-binding sites of compatible solute importers.IMPORTANCE The high-affinity import of compatible solutes from environmental sources is an important aspect of the cellular defense of many bacteria and archaea against the harmful effects of high external osmolarity. The accumulation of these osmostress protectants counteracts high-osmolarity-instigated water efflux, a drop in turgor to nonphysiological values, and an undue increase in molecular crowding of the cytoplasm; they thereby foster microbial growth under osmotically unfavorable conditions. Importers for compatible solutes allow the energy-preserving scavenging of osmoprotective and physiologically compliant organic solutes from environmental sources. We report here the discovery, exemplary physiological characterization, and phylogenomics of a new compatible solute importer, OpuF, widely found in members of the Bacillus genus. The OpuF system is a representative of a growing subgroup of ABC transporters in which the substrate-scavenging function of the substrate-binding protein (SBP) and the membrane-embedded substrate translocating subunit (TMD) are fused into a single polypeptide chain.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/química , Transportadoras de Casetes de Unión a ATP/química , Sitios de Unión , Transporte Biológico , Simulación por Computador , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Unión Proteica , Dominios Proteicos
14.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101191

RESUMEN

Ectoine and hydroxyectoine are widely synthesized by members of the Bacteria and a few members of the Archaea as potent osmostress protectants. We have studied the salient features of the osmostress-responsive promoter directing the transcription of the ectoine/hydroxyectoine biosynthetic gene cluster from the plant-root-associated bacterium Pseudomonas stutzeri by transferring it into Escherichia coli, an enterobacterium that does not produce ectoines naturally. Using ect-lacZ reporter fusions, we found that the heterologous ect promoter reacted with exquisite sensitivity in its transcriptional profile to graded increases in sustained high salinity, responded to a true osmotic signal, and required the buildup of an osmotically effective gradient across the cytoplasmic membrane for its induction. The involvement of the -10, -35, and spacer regions of the sigma-70-type ect promoter in setting promoter strength and response to osmotic stress was assessed through site-directed mutagenesis. Moderate changes in the ect promoter sequence that increase its resemblance to housekeeping sigma-70-type promoters of E. coli afforded substantially enhanced expression, both in the absence and in the presence of osmotic stress. Building on this set of ect promoter mutants, we engineered an E. coli chassis strain for the heterologous production of ectoines. This synthetic cell factory lacks the genes for the osmostress-responsive synthesis of trehalose and the compatible solute importers ProP and ProU, and it continuously excretes ectoines into the growth medium. By combining appropriate host strains and different plasmid variants, excretion of ectoine, hydroxyectoine, or a mixture of both compounds was achieved under mild osmotic stress conditions.IMPORTANCE Ectoines are compatible solutes, organic osmolytes that are used by microorganisms to fend off the negative consequences of high environmental osmolarity on cellular physiology. An understanding of the salient features of osmostress-responsive promoters directing the expression of the ectoine/hydroxyectoine biosynthetic gene clusters is lacking. We exploited the ect promoter from an ectoine/hydroxyectoine-producing soil bacterium for such a study by transferring it into a surrogate bacterial host. Despite the fact that E. coli does not synthesize ectoines naturally, the ect promoter retained its exquisitely sensitive osmotic control, indicating that osmoregulation of ect transcription is an inherent feature of the promoter and its flanking sequences. These sequences were narrowed to a 116-bp DNA fragment. Ectoines have interesting commercial applications. Building on data from a site-directed mutagenesis study of the ect promoter, we designed a synthetic cell factory that secretes ectoine, hydroxyectoine, or a mixture of both compounds into the growth medium.


Asunto(s)
Aminoácidos Diaminos/biosíntesis , Escherichia coli/metabolismo , Familia de Multigenes/genética , Ósmosis , Pseudomonas stutzeri/metabolismo , Aminoácidos Diaminos/genética , Escherichia coli/genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Regiones Promotoras Genéticas/genética , Pseudomonas stutzeri/genética , Salinidad
15.
Mol Microbiol ; 100(1): 108-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26712348

RESUMEN

The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Concentración Osmolar , Tolerancia a la Sal/genética , Esporas Bacterianas , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Salinidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Environ Microbiol ; 19(3): 926-946, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27318028

RESUMEN

Ectoine and 5-hydroxyectoine are widely synthesized microbial osmostress protectants. They are also versatile nutrients but their catabolism and the genetic regulation of the corresponding genes are incompletely understood. Using the marine bacterium Ruegeria pomeroyi DSS-3, we investigated the utilization of ectoines and propose a seven steps comprising catabolic route that entails an initial conversion of 5-hydroxyectoine to ectoine, the opening of the ectoine ring, and the subsequent degradation of this intermediate to l-aspartate. The catabolic genes are co-transcribed with three genes encoding a 5-hydroxyectoine/ectoine-specific TRAP transporter. A chromosomal deletion of this entire gene cluster abolishes the utilization of ectoines as carbon and nitrogen sources. The presence of ectoines in the growth medium triggers enhanced expression of the importer and catabolic operon, a process dependent on a substrate-inducible promoter that precedes this gene cluster. EnuR, a member of the MocR/GabR-type transcriptional regulators, controls the activity of this promoter and functions as a repressor. EnuR contains a covalently bound pyridoxal-5'-phosphate, and we suggest that this co-factor is critical for the substrate-mediated induction of the 5-hydroxyectoine/ectoine import and catabolic genes. Bioinformatics showed that ectoine consumers are restricted to the Proteobacteria and that EnuR is likely a central regulator for most ectoine/5-hydroxyectoine catabolic genes.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/metabolismo , Rhodobacteraceae/metabolismo , Factores de Transcripción/metabolismo , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Carbono/metabolismo , Medios de Cultivo , Proteínas de Transporte de Membrana/metabolismo , Familia de Multigenes , Nitrógeno/metabolismo , Factores de Transcripción/genética
17.
Environ Microbiol ; 19(9): 3700-3720, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28752945

RESUMEN

The ProJ and ProH enzymes of Bacillus subtilis catalyse together with ProA (ProJ-ProA-ProH), osmostress-adaptive synthesis of the compatible solute proline. The proA-encoded gamma-glutamyl phosphate reductase is also used for anabolic proline synthesis (ProB-ProA-ProI). Transcription of the proHJ operon is osmotically inducible whereas that of the proBA operon is not. Targeted and quantitative proteome analysis revealed that the amount of ProA is not limiting for the interconnected anabolic and osmostress-responsive proline production routes. A key player for enhanced osmostress-adaptive proline production is the osmotically regulated proHJ promoter. We used site-directed mutagenesis to study the salient features of this stress-responsive promoter. Two important features were identified: (i) deviations of the proHJ promoter from the consensus sequence of SigA-type promoters serve to keep transcription low under non-inducing growth conditions, while still allowing a finely tuned induction of transcriptional activity when the external osmolarity is increased and (ii) a suboptimal spacer length for SigA-type promoters of either 16-bp (the natural proHJ promoter), or 18-bp (a synthetic promoter variant) is strictly required to allow regulation of promoter activity in proportion to the external salinity. Collectively, our data suggest that changes in the local DNA structure at the proHJ promoter are important determinants for osmostress-inducibility of transcription.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Prolina/biosíntesis , Pirrolina Carboxilato Reductasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Glutamato-5-Semialdehído Deshidrogenasa/genética , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Mutación Puntual/genética , Regiones Promotoras Genéticas/genética , delta-1-Pirrolina-5-Carboxilato Reductasa
18.
Environ Microbiol ; 19(11): 4599-4619, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892254

RESUMEN

Ectoine and hydroxyectoine are effective microbial osmostress protectants, but can also serve as versatile nutrients for bacteria. We have studied the genetic regulation of ectoine and hydroxyectoine import and catabolism in the marine Roseobacter species Ruegeria pomeroyi and identified three transcriptional regulators involved in these processes: the GabR/MocR-type repressor EnuR, the feast and famine-type regulator AsnC and the two-component system NtrYX. The corresponding genes are widely associated with ectoine and hydroxyectoine uptake and catabolic gene clusters (enuR, asnC), and with microorganisms predicted to consume ectoines (ntrYX). EnuR contains a covalently bound pyridoxal-5'-phosphate as a co-factor and the chemistry underlying the functioning of MocR/GabR-type regulators typically requires a system-specific low molecular mass effector molecule. Through ligand binding studies with purified EnuR, we identified N-(alpha)-L-acetyl-2,4-diaminobutyric acid and L-2,4-diaminobutyric acid as inducers for EnuR that are generated through ectoine catabolism. AsnC/Lrp-type proteins can wrap DNA into nucleosome-like structures, and we found that the asnC gene was essential for use of ectoines as nutrients. Furthermore, we discovered through transposon mutagenesis that the NtrYX two-component system is required for their catabolism. Database searches suggest that our findings have important ramifications for an understanding of the molecular biology of most microbial consumers of ectoines.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Elementos Reguladores de la Transcripción/genética , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Transactivadores/genética , Aminobutiratos/química , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Señales (Psicología) , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica/genética , Familia de Multigenes
19.
Biol Chem ; 398(2): 193-214, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27935846

RESUMEN

The development of a semi-permeable cytoplasmic membrane was a key event in the evolution of microbial proto-cells. As a result, changes in the external osmolarity will inevitably trigger water fluxes along the osmotic gradient. The ensuing osmotic stress has consequences for the magnitude of turgor and will negatively impact cell growth and integrity. No microorganism can actively pump water across the cytoplasmic membrane; hence, microorganisms have to actively adjust the osmotic potential of their cytoplasm to scale and direct water fluxes in order to prevent dehydration or rupture. They will accumulate ions and physiologically compliant organic osmolytes, the compatible solutes, when they face hyperosmotic conditions to retain cell water, and they rapidly expel these compounds through the transient opening of mechanosensitive channels to curb water efflux when exposed to hypo-osmotic circumstances. Here, we provide an overview on the salient features of the osmostress response systems of the ubiquitously distributed bacterium Bacillus subtilis with a special emphasis on the transport systems and channels mediating regulation of cellular hydration and turgor under fluctuating osmotic conditions. The uptake of osmostress protectants via the Opu family of transporters, systems of central importance for the management of osmotic stress by B. subtilis, will be particularly highlighted.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Presión Osmótica , Bacillus subtilis/citología , Transporte Biológico , Homeostasis , Humanos
20.
Proc Natl Acad Sci U S A ; 111(14): E1409-18, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706874

RESUMEN

Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana/metabolismo , Bacillus subtilis/metabolismo , Sitios de Unión , Citocromos c/metabolismo , Homeostasis , Membrana Dobles de Lípidos , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA