Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 292(39): 16024-16031, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28821613

RESUMEN

The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly.


Asunto(s)
Roturas del ADN de Cadena Simple , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Ensayo Cometa , Secuencia Conservada , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Cinética , Mutación , Estrés Oxidativo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
2.
Nucleic Acids Res ; 43(14): 6934-44, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26130715

RESUMEN

Poly (ADP-ribose) is synthesized at DNA single-strand breaks and can promote the recruitment of the scaffold protein, XRCC1. However, the mechanism and importance of this process has been challenged. To address this issue, we have characterized the mechanism of poly (ADP-ribose) binding by XRCC1 and examined its importance for XRCC1 function. We show that the phosphate-binding pocket in the central BRCT1 domain of XRCC1 is required for selective binding to poly (ADP-ribose) at low levels of ADP-ribosylation, and promotes interaction with cellular PARP1. We also show that the phosphate-binding pocket is required for EGFP-XRCC1 accumulation at DNA damage induced by UVA laser, H2O2, and at sites of sub-nuclear PCNA foci, suggesting that poly (ADP-ribose) promotes XRCC1 recruitment both at single-strand breaks globally across the genome and at sites of DNA replication stress. Finally, we show that the phosphate-binding pocket is required following DNA damage for XRCC1-dependent acceleration of DNA single-strand break repair, DNA base excision repair, and cell survival. These data support the hypothesis that poly (ADP-ribose) synthesis promotes XRCC1 recruitment at DNA damage sites and is important for XRCC1 function.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Sitios de Unión , Células CHO , Línea Celular Tumoral , Supervivencia Celular , Cricetulus , Daño del ADN , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Estructura Terciaria de Proteína , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
3.
DNA Repair (Amst) ; 58: 52-61, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28866241

RESUMEN

Acylpeptide hydrolase (APEH) deacetylates N-alpha-acetylated peptides and selectively degrades oxidised proteins, but the biochemical pathways that are regulated by this protease are unknown. Here, we identify APEH as a component of the cellular response to DNA damage. Although APEH is primarily localised in the cytoplasm, we show that a sub-fraction of this enzyme is sequestered at sites of nuclear damage following UVA irradiation or following oxidative stress. We show that localization of APEH at sites of nuclear damage is mediated by direct interaction with XRCC1, a scaffold protein that accelerates the repair of DNA single-strand breaks. We show that APEH interacts with the amino-terminal domain of XRCC1, and that APEH facilitates both single-strand break repair and cell survival following exposure to H2O2 in human cells. These data identify APEH as a novel proteolytic component of the DNA damage response.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Péptido Hidrolasas/metabolismo , ADN/efectos de los fármacos , ADN/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
4.
Methods Enzymol ; 409: 410-25, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16793415

RESUMEN

Chromosomal single-strand breaks (SSBs) are the most common lesions arising in cells, but are normally rapidly repaired by multiprotein complexes centered around the scaffold protein, XRCC1. Here, we describe protocols to measure chromosomal SSBs in cells and for recovering and identifying novel components of SSBR complexes in vitro and in vivo. We also describe an assay we employ to measure the rate of replication fork progression in mammalian/vertebrate cells in the presence or absence of DNA damage.


Asunto(s)
Cromosomas , Daño del ADN , Replicación del ADN , ADN de Cadena Simple/genética , Animales , Células CHO , Cromatografía de Afinidad , Ensayo Cometa , Cricetinae , Electroforesis en Gel de Agar
5.
Nucleic Acids Res ; 32(8): 2550-5, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15141024

RESUMEN

X-ray repair cross-complementing protein-1 (XRCC1)-deficient cells are sensitive to DNA damaging agents and have delayed processing of DNA base lesions. In support of its role in base excision repair, it was found that XRCC1 forms a tight complex with DNA ligase IIIalpha and also interacts with DNA polymerase beta (Pol beta) and other base excision repair (BER) proteins. We have isolated wild-type XRCC1-DNA ligase IIIalpha heterodimer and mutated XRCC1-DNA ligase IIIalpha complex that does not interact with Pol beta and tested their activities in BER reconstituted with human purified proteins. We find that a point mutation in the XRCC1 protein which disrupts functional interaction with Pol beta, affected the ligation efficiency of the mutant XRCC1-DNA ligase IIIalpha heterodimer in reconstituted BER reactions. We also compared sensitivity to hydrogen peroxide between wild-type CHO-9 cells, XRCC1-deficient EM-C11 cells and EM-C11 cells transfected with empty plasmid vector or with plasmid vector carrying wild-type or mutant XRCC1 gene and find that the plasmid encoding XRCC1 protein, that does not interact with Pol beta has reduced ability to rescue the hydrogen peroxide sensitivity of XRCC1- deficient cells. These data suggest an important role for the XRCC1-Pol beta interaction for coordinating the efficiency of the BER process.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetinae , ADN Ligasa (ATP) , ADN Ligasas/aislamiento & purificación , ADN Ligasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Dimerización , Humanos , Peróxido de Hidrógeno/farmacología , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
6.
DNA Repair (Amst) ; 3(11): 1493-502, 2004 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-15380105

RESUMEN

Ataxia-oculomotor apraxia 1 (AOA1) is an autosomal recessive neurodegenerative disease that is reminiscent of ataxia-telangiectasia (A-T). AOA1 is caused by mutations in the gene encoding aprataxin, a protein whose physiological function is currently unknown. We report here that, in contrast to A-T, AOA1 cell lines exhibit neither radioresistant DNA synthesis nor a reduced ability to phosphorylate downstream targets of ATM following DNA damage, suggesting that AOA1 lacks the cell cycle checkpoint defects that are characteristic of A-T. In addition, AOA1 primary fibroblasts exhibit only mild sensitivity to ionising radiation, hydrogen peroxide, and methyl methanesulphonate (MMS). Strikingly, however, aprataxin physically interacts in vitro and in vivo with the DNA strand break repair proteins XRCC1 and XRCC4. Aprataxin possesses a divergent forkhead associated (FHA) domain that closely resembles the FHA domain present in polynucleotide kinase, and appears to mediate the interactions with CK2-phosphorylated XRCC1 and XRCC4 through this domain. Aprataxin is therefore physically associated with both the DNA single-strand and double-strand break repair machinery, raising the possibility that AOA1 is a novel DNA damage response-defective disease.


Asunto(s)
Apraxias/genética , Apraxias/metabolismo , Ataxia/genética , Ataxia/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Línea Celular , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Humanos , Técnicas In Vitro , Proteínas Nucleares/química , Enfermedades del Nervio Oculomotor/genética , Enfermedades del Nervio Oculomotor/metabolismo , Tolerancia a Radiación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
7.
Mol Cell Biol ; 29(17): 4653-62, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546231

RESUMEN

Oxidative stress is a major source of chromosome single-strand breaks (SSBs), and the repair of these lesions is retarded in neurodegenerative disease. The rate of the repair of oxidative SSBs is accelerated by XRCC1, a scaffold protein that is essential for embryonic viability and that interacts with multiple DNA repair proteins. However, the relative importance of the interactions mediated by XRCC1 during oxidative stress in vivo is unknown. We show that mutations that disrupt the XRCC1 interaction with DNA polymerase beta or DNA ligase III fail to slow SSB repair in proliferating CHO cells following oxidative stress. In contrast, mutation of the domain that interacts with polynucleotide kinase/phosphatase (PNK) and Aprataxin retards repair, and truncated XRCC1 encoding this domain fully supports this process. Importantly, the impact of mutating the protein domain in XRCC1 that binds these end-processing factors is circumvented by the overexpression of wild-type PNK but not by the overexpression of PNK harboring a mutated DNA 3'-phosphatase domain. These data suggest that DNA 3'-phosphatase activity is critical for rapid rates of chromosomal SSB repair following oxidative stress, and that the XRCC1-PNK interaction ensures that this activity is not rate limiting in vivo.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Nucleotidasas/metabolismo , Estrés Oxidativo , Animales , Células CHO , Cricetinae , Cricetulus , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidasas/genética , Oxidantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA