Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(1): 157-70, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24976009

RESUMEN

The Hippo transducers YAP/TAZ have been shown to play positive, as well as negative, roles in Wnt signaling, but the underlying mechanisms remain unclear. Here, we provide biochemical, functional, and genetic evidence that YAP and TAZ are integral components of the ß-catenin destruction complex that serves as cytoplasmic sink for YAP/TAZ. In Wnt-ON cells, YAP/TAZ are physically dislodged from the destruction complex, allowing their nuclear accumulation and activation of Wnt/YAP/TAZ-dependent biological effects. YAP/TAZ are required for intestinal crypt overgrowth induced by APC deficiency and for crypt regeneration ex vivo. In Wnt-OFF cells, YAP/TAZ are essential for ß-TrCP recruitment to the complex and ß-catenin inactivation. In Wnt-ON cells, release of YAP/TAZ from the complex is instrumental for Wnt/ß-catenin signaling. In line, the ß-catenin-dependent maintenance of ES cells in an undifferentiated state is sustained by loss of YAP/TAZ. This work reveals an unprecedented signaling framework relevant for organ size control, regeneration, and tumor suppression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Aciltransferasas , Animales , Proteínas de Ciclo Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Proteínas Señalizadoras YAP
2.
Cell ; 151(7): 1443-56, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23245942

RESUMEN

Wnt growth factors are fundamental regulators of cell fate, but how the Wnt signal is translated into biological responses is incompletely understood. Here, we report that TAZ, a biologically potent transcriptional coactivator, serves as a downstream element of the Wnt/ß-catenin cascade. This function of TAZ is independent from its well-established role as mediator of Hippo signaling. In the absence of Wnt activity, the components of the ß-catenin destruction complex--APC, Axin, and GSK3--are also required to keep TAZ at low levels. TAZ degradation depends on phosphorylated ß-catenin that bridges TAZ to its ubiquitin ligase ß-TrCP. Upon Wnt signaling, escape of ß-catenin from the destruction complex impairs TAZ degradation and leads to concomitant accumulation of ß-catenin and TAZ. At the genome-wide level, a substantial portion of Wnt transcriptional responses is mediated by TAZ. TAZ activation is a general feature of Wnt signaling and is functionally relevant to mediate Wnt biological effects.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteolisis , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , beta Catenina/metabolismo , gamma Catenina/metabolismo
3.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36585787

RESUMEN

Chromosomal translocations in cancer genomes, key players in many types of cancers, generate chimeric proteins that drive oncogenesis. Genomes with chromosomal rearrangements can also produce fusion circular RNAs (f-circRNAs) by backsplicing of chimeric transcripts, as first shown in leukemias with PML::RARα and KMT2A::MLLT3 translocations and later in solid cancers. F-circRNAs contribute to the oncogenic processes and reinforce the oncogenic activity of chimeric proteins. In leukemia with KMT2A::AFF1 (MLL::AF4) fusions, we previously reported specific alterations of circRNA expression, but nothing was known about f-circRNAs. Due to the presence of two chimeric sequences, fusion and backsplice junctions, the identification of f-circRNAs with available tools is challenging, possibly resulting in the underestimation of this RNA species, especially when the breakpoint is not known. We developed CircFusion, a new software tool to detect linear fusion transcripts and f-circRNAs from RNA-seq data, both in samples for which the breakpoints are known and when the information about the joined exons is missing. CircFusion can detect linear and circular chimeric transcripts deriving from the main and reciprocal translocations also in the presence of multiple breakpoints, which are common in malignant cells. Benchmarking tests on simulated and real datasets of cancer samples with previously experimentally determined f-circRNAs showed that CircFusion provides reliable predictions and outperforms available methods for f-circRNA detection. We discovered and validated novel f-circRNAs in acute leukemia harboring KMT2A::AFF1 rearrangements, leading the way to future functional studies aimed to unveil their role in this malignancy.


Asunto(s)
Leucemia Mieloide Aguda , ARN Circular , Humanos , Proteínas de Unión al ADN , Leucemia Mieloide Aguda/genética , Proteínas Recombinantes de Fusión , ARN , ARN Circular/genética , Programas Informáticos , Factores de Elongación Transcripcional , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
4.
Br J Haematol ; 205(1): 306-315, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815995

RESUMEN

Thrombocytopenia 4 (THC4) is an autosomal-dominant thrombocytopenia caused by mutations in CYCS, the gene encoding cytochrome c (CYCS), a small haeme protein essential for electron transport in mitochondria and cell apoptosis. THC4 is considered an extremely rare condition since only a few patients have been reported so far. These subjects presented mild thrombocytopenia and no or mild bleeding tendency. In this study, we describe six Italian families with five different heterozygous missense CYCS variants: p.Gly42Ser and p.Tyr49His previously associated with THC4, and three novel variants (p.Ala52Thr, p.Arg92Gly, and p.Leu99Val), which have been classified as pathogenic by bioinformatics and segregation analyses. Moreover, we supported functional effects of p.Ala52Thr and p.Arg92Gly on oxidative growth and respiratory activity in a yeast model. The clinical characterization of the 22 affected individuals, the largest series of THC4 patients ever reported, showed that this disorder is characterized by mild-to-moderate thrombocytopenia, normal platelet size, and function, low risk of bleeding, and no additional clinical phenotypes associated with reduced platelet count. Finally, we describe a significant correlation between the region of CYCS affected by mutations and the extent of thrombocytopenia, which could reflect different degrees of impairment of CYCS functions caused by different pathogenetic variants.


Asunto(s)
Citocromos c , Trombocitopenia , Humanos , Trombocitopenia/genética , Femenino , Masculino , Citocromos c/genética , Adulto , Persona de Mediana Edad , Linaje , Mutación Missense , Anciano , Adolescente , Mutación , Adulto Joven , Niño
5.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35106564

RESUMEN

Circular RNAs (circRNAs), transcripts generated by backsplicing, are particularly stable and pleiotropic molecules, whose dysregulation drives human diseases and cancer by modulating gene expression and signaling pathways. CircRNAs can regulate cellular processes by different mechanisms, including interaction with microRNAs (miRNAs) and RNA-binding proteins (RBP), and encoding specific peptides. The prediction of circRNA functions is instrumental to interpret their impact in diseases, and to prioritize circRNAs for functional investigation. Currently, circRNA functional predictions are provided by web databases that do not allow custom analyses, while self-standing circRNA prediction tools are mostly limited to predict only one type of function, mainly focusing on the miRNA sponge activity of circRNAs. To solve these issues, we developed CRAFT (CircRNA Function prediction Tool), a freely available computational pipeline that predicts circRNA sequence and molecular interactions with miRNAs and RBP, along with their coding potential. Analysis of a set of circRNAs with known functions has been used to appraise CRAFT predictions and to optimize its setting. CRAFT provides a comprehensive graphical visualization of the results, links to several knowledge databases, and extensive functional enrichment analysis. Moreover, it originally combines the predictions for different circRNAs. CRAFT is a useful tool to help the user explore the potential regulatory networks involving the circRNAs of interest and generate hypotheses about the cooperation of circRNAs into the modulation of biological processes.


Asunto(s)
MicroARNs , ARN Circular , Biología Computacional/métodos , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Programas Informáticos
6.
Cell Mol Life Sci ; 80(8): 233, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505240

RESUMEN

Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Colágeno/metabolismo , Transducción de Señal , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo
7.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396911

RESUMEN

In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 µs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.


Asunto(s)
Mitocondrias , Neoplasias , Mitocondrias/metabolismo , Membrana Celular/metabolismo , Electricidad , Citoesqueleto/metabolismo , Encéfalo/metabolismo , Neoplasias/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338881

RESUMEN

The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.


Asunto(s)
MicroARNs , Neuroblastoma , Humanos , MicroARNs/genética , Multiómica , Neuroblastoma/metabolismo , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Br J Haematol ; 203(5): 852-859, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37610030

RESUMEN

MECOM-associated syndrome (MECOM-AS) is a rare disease characterized by amegakaryocytic thrombocytopenia, progressive bone marrow failure, pancytopenia and radioulnar synostosis with high penetrance. The clinical phenotype may also include finger malformations, cardiac and renal alterations, hearing loss, B-cell deficiency and predisposition to infections. The syndrome, usually diagnosed in the neonatal period because of severe thrombocytopenia, is caused by mutations in the MECOM gene, encoding for the transcription factor EVI1. The mechanism linking the alteration of EVI1 function and thrombocytopenia is poorly understood. In a paediatric patient affected by severe thrombocytopenia, we identified a novel variant of the MECOM gene (p.P634L), whose effect was tested on pAP-1 enhancer element and promoters of targeted genes showing that the mutation impairs the repressive activity of the transcription factor. Moreover, we demonstrated that EVI1 controls the transcriptional regulation of MPL, a gene whose mutations are responsible for congenital amegakaryocytic thrombocytopenia (CAMT), potentially explaining the partial overlap between MECOM-AS and CAMT.


Asunto(s)
Pancitopenia , Trombocitopenia , Recién Nacido , Humanos , Niño , Pancitopenia/etiología , Factores de Transcripción/genética , Trombocitopenia/diagnóstico , Trastornos de Fallo de la Médula Ósea , Mutación , Receptores de Trombopoyetina/genética , Proteína del Locus del Complejo MDS1 y EV11/genética
10.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32436933

RESUMEN

Whole exome sequencing (WES) is a powerful approach for discovering sequence variants in cancer cells but its time effectiveness is limited by the complexity and issues of WES data analysis. Here we present iWhale, a customizable pipeline based on Docker and SCons, reliably detecting somatic variants by three complementary callers (MuTect2, Strelka2 and VarScan2). The results are combined to obtain a single variant call format file for each sample and variants are annotated by integrating a wide range of information extracted from several reference databases, ultimately allowing variant and gene prioritization according to different criteria. iWhale allows users to conduct a complex series of WES analyses with a powerful yet customizable and easy-to-use tool, running on most operating systems (macOs, GNU/Linux and Windows). iWhale code is freely available at https://github.com/alexcoppe/iWhale and the docker image is downloadable from https://hub.docker.com/r/alexcoppe/iwhale.


Asunto(s)
Biología Computacional/métodos , Mutación , Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Secuenciación del Exoma
11.
Blood ; 138(7): 557-570, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34010415

RESUMEN

Bone marrow (BM) microenvironment contributes to the regulation of normal hematopoiesis through a finely tuned balance of self-renewal and differentiation processes, cell-cell interaction, and secretion of cytokines that during leukemogenesis are altered and favor tumor cell growth. In pediatric acute myeloid leukemia (AML), chemotherapy is the standard of care, but >30% of patients still relapse. The need to accelerate the evaluation of innovative medicines prompted us to investigate the role of mesenchymal stromal cells (MSCs) in the leukemic niche to define its contribution to the mechanism of leukemia drug escape. We generated a humanized 3-dimensional (3D) niche with AML cells and MSCs derived from either patients (AML-MSCs) or healthy donors. We observed that AML cells establish physical connections with MSCs, mediating a reprogrammed transcriptome inducing aberrant cell proliferation and differentiation and severely compromising their immunomodulatory capability. We confirmed that AML cells modulate h-MSCs transcriptional profile promoting functions similar to the AML-MSCs when cocultured in vitro, thus facilitating leukemia progression. Conversely, MSCs derived from BM of patients at time of disease remission showed recovered healthy features at transcriptional and functional levels, including the secretome. We proved that AML blasts alter MSCs activities in the BM niche, favoring disease development and progression. We discovered that a novel AML-MSC selective CaV1.2 channel blocker drug, lercanidipine, is able to impair leukemia progression in 3D both in vitro and when implanted in vivo if used in combination with chemotherapy, supporting the hypothesis that synergistic effects can be obtained by dual targeting approaches.


Asunto(s)
Proliferación Celular , Leucemia Mieloide Aguda/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transcriptoma , Canales de Calcio Tipo L/metabolismo , Dihidropiridinas/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Células Madre Mesenquimatosas/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral
12.
J Clin Immunol ; 42(2): 299-311, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34718934

RESUMEN

Chronic granulomatous disease (CGD) is a rare inborn error of immunity (IEI), characterized by a deficient phagocyte killing due to the inability of NADPH oxidase to produce reactive oxygen species in the phagosome. Patients with CGD suffer from severe and recurrent infections and chronic inflammatory disorders. Onset of CGD has been rarely reported in neonates and only as single case reports or small case series. We report here the cases of three newborns from two different kindreds, presenting with novel infectious and inflammatory phenotypes associated with CGD. A girl with CYBA deficiency presented with necrotizing pneumonia, requiring a prolonged antibiotic treatment and resulting in fibrotic pulmonary changes. From the second kindred, the first of two brothers developed a fatal Burkholderia multivorans sepsis and died at 24 days of life. His younger brother had a diagnosis of CYBB deficiency and presented with Macrophage Activation Syndrome/Hemophagocytic Lympho-Histiocytosis (MAS/HLH) without any infection, that could be controlled with steroids. We further report the findings of a review of the literature and show that the spectrum of microorganisms causing infections in neonates with CGD is similar to that of older patients, but the clinical manifestations are more diverse, especially those related to the inflammatory syndromes. Our findings extend the spectrum of the clinical presentation of CGD to include unusual neonatal phenotypes. The recognition of the very early, potentially life-threatening manifestations of CGD is crucial for a prompt diagnosis, improvement of survival and reduction of the risk of long-term sequelae.


Asunto(s)
Enfermedad Granulomatosa Crónica , Histiocitosis , Síndrome de Activación Macrofágica , Neumonía Necrotizante , Femenino , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Humanos , Recién Nacido , Masculino , Fenotipo , Neumonía Necrotizante/complicaciones
13.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328420

RESUMEN

Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioblastoma , Adulto , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo
14.
Hum Genet ; 140(9): 1299-1312, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34185153

RESUMEN

Genetic defects of innate immunity impairing intestinal bacterial sensing are linked to the development of Inflammatory Bowel Disease (IBD). Although much evidence supports a role of the intestinal virome in gut homeostasis, most studies focus on intestinal viral composition rather than on host intestinal viral sensitivity. To demonstrate the association between the development of Very Early Onset IBD (VEOIBD) and variants in the IFIH1 gene which encodes MDA5, a key cytosolic sensor for viral nucleic acids. Whole exome sequencing (WES) was performed in two independent cohorts of children with VEOIBD enrolled in Italy (n = 18) and USA (n = 24). Luciferase reporter assays were employed to assess MDA5 activity. An enrichment analysis was performed on IFIH1 comparing 42 VEOIBD probands with 1527 unrelated individuals without gastrointestinal or immunological issues. We identified rare, likely loss-of-function (LoF), IFIH1 variants in eight patients with VEOIBD from a combined cohort of 42 children. One subject, carrying a homozygous truncating variant resulting in complete LoF, experienced neonatal-onset, pan-gastrointestinal, IBD-like enteropathy plus multiple infectious episodes. The remaining seven subjects, affected by VEOIBD without immunodeficiency, were carriers of one LoF variant in IFIH1. Among these, two patients also carried a second hypomorphic variant, with partial function apparent when MDA5 was weakly stimulated. Furthermore, IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p = 0.007). Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.


Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Helicasa Inducida por Interferón IFIH1/genética , Mutación con Pérdida de Función , Preescolar , Femenino , Humanos , Lactante , Italia , Masculino , Secuenciación Completa del Genoma
15.
Br J Haematol ; 190(2): 262-273, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32118299

RESUMEN

ETV6-RUNX1 (E/R) fusion gene, arising in utero from translocation t(12;21)(p13:q22), is the most frequent alteration in childhood acute lymphoblastic leukemia (ALL). However, E/R is insufficient to cause overt leukemia since it generates a clinically silent pre-leukemic clone which persists in the bone marrow but fails to out-compete normal progenitors. Conversely, pre-leukemic cells show increased susceptibility to transformation following additional genetic insults. Infections/inflammation are the most accredited triggers for mutations accumulation and leukemic transformation in E/R+ pre-leukemic cells. However, precisely how E/R and inflammation interact in promoting leukemia is still poorly understood. Here we demonstrate that IL6/TNFα/ILß pro-inflammatory cytokines cooperate with BM-MSC in promoting the emergence of E/R+ Ba/F3 over their normal counterparts by differentially affecting their proliferation and survival. Moreover, IL6/TNFα/ILß-stimulated BM-MSC strongly attract E/R+ Ba/F3 in a CXCR2-dependent manner. Interestingly, E/R-expressing human CD34+ IL7R+ progenitors, a putative population for leukemia initiation during development, were preserved in the presence of BM-MSC and IL6/TNFα/ILß compared to their normal counterparts. Finally, the extent of DNA damage increases within the inflamed niche in both control and E/R-expressing Ba/F3, potentially leading to transformation in the apoptosis-resistant pre-leukemic clone. Overall, our data provide new mechanistic insights into childhood ALL pathogenesis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Translocación Genética
16.
Int J Cancer ; 145(11): 3089-3100, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044428

RESUMEN

Considering the role played by the heat shock protein of 70 kDa (HSP70) in cancer, we characterized this protein and its major regulator, the heat shock factor 1 (HSF1), in chronic lymphocytic leukemia (CLL). We found both HSP70 and HSF1 overexpressed in CLL patients, correlated to poor prognosis and abnormally localized in the nucleus of leukemic B cells. The two proteins were strictly correlated each other and their levels decreased consensually in those patients responding to in vivo therapeutic regimens. HSP70 and HSF1 inhibition was proved to be effective in inducing a dose-dependent in vitro apoptosis of CLL B cells. Considering that HSF1 is finely regulated by kinases belonging to pathways triggered by rat sarcoma (RAS), we benefited from a previous proteomic study performed in CLL patients aiming to assess the activation/expression of key signaling proteins. We found that patients showing high levels of HSP70 also expressed high Akt-Ser473, thus activating HSF1. Inhibition of PI3K, which activates AKT, reduced the expression of HSF1 and HSP70. By contrast, HSP70-low patients displayed high activation of MEK1/2 and ERK1/2, known to negatively regulate HSF1. These data demonstrate that the HSP70 expression is regulated by the modulation of HSF1 activity through the activation of RAS-regulated pathways and suggest the HSP70/HSF1 interplay as an interesting target for antileukemic therapies. Finally, inhibition of PI3K, that activates AKT, reduced the expression of HSF1 and HSP70.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Transducción de Señal , Adenina/análogos & derivados , Estudios de Casos y Controles , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Flavonoides/farmacología , Flavonoles , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Terapia Molecular Dirigida , Fosfatidilinositol 3-Quinasas/metabolismo , Piperidinas , Pronóstico , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
EMBO J ; 34(10): 1349-70, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25796446

RESUMEN

Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ.


Asunto(s)
Bacterias Aerobias/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Drosophila , Glucólisis/genética , Glucólisis/fisiología , Humanos , Inmunoprecipitación , Fosfoproteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Señalizadoras YAP
20.
Blood ; 130(25): 2750-2761, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29101238

RESUMEN

Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 (IL-4) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Glucocorticoides/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Niño , Dasatinib/farmacología , Dexametasona/farmacología , Xenoinjertos , Humanos , Interleucina-4/farmacología , Activación de Linfocitos/efectos de los fármacos , Linfocitos/enzimología , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Prednisona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA