Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurochem ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401737

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.

2.
Mol Cell ; 57(2): 261-72, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25544560

RESUMEN

Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.


Asunto(s)
Glucógeno/metabolismo , Enfermedad de Lafora/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Oligosacáridos/química , Fosfatos/química , Fosforilación , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/fisiología
3.
Cell Mol Life Sci ; 73(14): 2765-2778, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27147465

RESUMEN

Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.


Asunto(s)
Glucanos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Sitios de Unión , Familia de Multigenes , Unión Proteica , Especificidad por Sustrato
4.
J Biol Chem ; 289(28): 19383-94, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24838245

RESUMEN

Calpain 5 (CAPN5) is a non-classical member of the calpain family. It lacks the EF hand motif characteristic of classical calpains but retains catalytic and Ca(2+) binding domains, and it contains a unique C-terminal domain. TRA-3, an ortholog of CAPN5, has been shown to be involved in necrotic cell death in Caenorhabditis elegans. CAPN5 is expressed throughout the CNS, but its expression relative to other calpains and subcellular distribution has not been investigated previously. Based on relative mRNA levels, Capn5 is the second most highly expressed calpain in the rat CNS, with Capn2 mRNA being the most abundant. Unlike classical calpains, CAPN5 is a non-cytosolic protein localized to the nucleus and extra-nuclear locations. CAPN5 possesses two nuclear localization signals (NLS): an N-terminal monopartite NLS and a unique bipartite NLS closer to the C terminus. The C-terminal NLS contains a SUMO-interacting motif that contributes to nuclear localization, and mutation or deletion of both NLS renders CAPN5 exclusively cytosolic. Dual NLS motifs are common among transcription factors. Interestingly, CAPN5 is found in punctate domains associated with promyelocytic leukemia (PML) protein within the nucleus. PML nuclear bodies are implicated in transcriptional regulation, cell differentiation, cellular response to stress, viral defense, apoptosis, and cell senescence as well as protein sequestration, modification, and degradation. The roles of nuclear CAPN5 remain to be determined.


Asunto(s)
Calpaína/biosíntesis , Núcleo Celular/enzimología , Sistema Nervioso Central/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Cuerpos de Inclusión Intranucleares/enzimología , Señales de Localización Nuclear/metabolismo , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Calpaína/genética , Núcleo Celular/genética , Cuerpos de Inclusión Intranucleares/genética , Masculino , Ratones , Ratones Transgénicos , Señales de Localización Nuclear/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
BMC Biochem ; 15: 8, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24690255

RESUMEN

BACKGROUND: The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. RESULTS: In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. CONCLUSIONS: Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease.


Asunto(s)
Pollos/inmunología , Escherichia coli/genética , Enfermedad de Lafora/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Animales , Carbohidratos/química , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/aislamiento & purificación , Fosfatasas de Especificidad Dual/metabolismo , Glucógeno/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Masculino , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Unión Proteica , Estabilidad Proteica , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Solubilidad
7.
8.
Mol Neurobiol ; 59(2): 1214-1229, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34962634

RESUMEN

Lafora disease (LD) is a fatal childhood-onset dementia characterized by the extensive accumulation of glycogen aggregates-the so-called Lafora Bodies (LBs)-in several organs. The accumulation of LBs in the brain underlies the neurological phenotype of the disease. LBs are composed of abnormal glycogen and various associated proteins, including p62, an autophagy adaptor that participates in the aggregation and clearance of misfolded proteins. To study the role of p62 in the formation of LBs and its participation in the pathology of LD, we generated a mouse model of the disease (malinKO) lacking p62. Deletion of p62 prevented LB accumulation in skeletal muscle and cardiac tissue. In the brain, the absence of p62 altered LB morphology and increased susceptibility to epilepsy. These results demonstrate that p62 participates in the formation of LBs and suggest that the sequestration of abnormal glycogen into LBs is a protective mechanism through which it reduces the deleterious consequences of its accumulation in the brain.


Asunto(s)
Enfermedad de Lafora , Animales , Modelos Animales de Enfermedad , Glucógeno/metabolismo , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/genética , Ratones , Ratones Noqueados , Proteína Sequestosoma-1
9.
iScience ; 24(11): 103276, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755096

RESUMEN

Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients.

10.
Cell Metab ; 33(7): 1404-1417.e9, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34043942

RESUMEN

Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.


Asunto(s)
Encéfalo/metabolismo , Glucosamina/metabolismo , Glucógeno/fisiología , Procesamiento Proteico-Postraduccional , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Glucógeno/metabolismo , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Glucogenólisis/genética , Glicosilación , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Procesamiento Proteico-Postraduccional/genética
11.
Mol Neurobiol ; 57(11): 4657-4666, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32770452

RESUMEN

Brain glycogen is mainly stored in astrocytes. However, recent studies both in vitro and in vivo indicate that glycogen also plays important roles in neurons. By conditional deletion of glycogen synthase (GYS1), we previously developed a mouse model entirely devoid of glycogen in the central nervous system (GYS1Nestin-KO). These mice displayed altered electrophysiological properties in the hippocampus and increased susceptibility to kainate-induced seizures. To understand which of these functions are related to astrocytic glycogen, in the present study, we generated a mouse model in which glycogen synthesis is eliminated specifically in astrocytes (GYS1Gfap-KO). Electrophysiological recordings of awake behaving mice revealed alterations in input/output curves and impaired long-term potentiation, similar, but to a lesser extent, to those obtained with GYS1Nestin-KO mice. Surprisingly, GYS1Gfap-KO mice displayed no change in susceptibility to kainate-induced seizures as determined by fEPSP recordings and video monitoring. These results confirm the importance of astrocytic glycogen in synaptic plasticity.


Asunto(s)
Astrocitos/metabolismo , Glucógeno/metabolismo , Plasticidad Neuronal/fisiología , Convulsiones/fisiopatología , Animales , Susceptibilidad a Enfermedades , Fenómenos Electrofisiológicos , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/fisiopatología , Ácido Kaínico , Masculino , Ratones Noqueados
12.
Carbohydr Polym ; 240: 116260, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32475552

RESUMEN

Abnormal carbohydrate structures known as polyglucosan bodies (PGBs) are associated with neurological disorders, glycogen storage diseases (GSDs), and aging. A hallmark of the GSD Lafora disease (LD), a fatal childhood epilepsy caused by recessive mutations in the EPM2A or EPM2B genes, are cytoplasmic PGBs known as Lafora bodies (LBs). LBs result from aberrant glycogen metabolism and drive disease progression. They are abundant in brain, muscle and heart of LD patients and Epm2a-/- and Epm2b-/- mice. LBs and PGBs are histologically reminiscent of starch, semicrystalline carbohydrates synthesized for glucose storage in plants. In this study, we define LB architecture, tissue-specific differences, and dynamics. We propose a model for how small polyglucosans aggregate to form LBs. LBs are very similar to PGBs of aging and other neurological disorders, and so these studies have direct relevance to the general understanding of PGB structure and formation.


Asunto(s)
Glucanos/ultraestructura , Cuerpos de Inclusión , Enfermedad de Lafora/patología , Animales , Modelos Animales de Enfermedad , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/ultraestructura , Ratones , Ratones Noqueados
13.
Adv Neurobiol ; 23: 17-81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667805

RESUMEN

This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.


Asunto(s)
Química Encefálica , Encéfalo/metabolismo , Glucógeno/química , Glucógeno/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Encéfalo/anatomía & histología
14.
Cell Metab ; 30(4): 689-705.e6, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353261

RESUMEN

Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.


Asunto(s)
Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Cuerpos de Inclusión/efectos de los fármacos , Enfermedad de Lafora/terapia , alfa-Amilasas Pancreáticas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inmunoglobulina G/uso terapéutico , Ratones , Ratones Endogámicos C57BL , alfa-Amilasas Pancreáticas/uso terapéutico , Ratas , Proteínas Recombinantes de Fusión/uso terapéutico
15.
Epilepsy Res ; 145: 169-177, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30041081

RESUMEN

Lafora disease (LD, OMIM 254780) is a rare disorder characterized by epilepsy and neurodegeneration leading patients to a vegetative state and death, usually within the first decade from the onset of the first symptoms. In the vast majority of cases LD is related to mutations in either the EPM2A gene (encoding the glucan phosphatase laforin) or the EPM2B gene (encoding the E3-ubiquitin ligase malin). In this work, we characterize the mutations present in the EPM2A gene in a patient displaying a slow progression form of the disease. The patient is compound heterozygous with Y112X and N163D mutations in the corresponding alleles. In primary fibroblasts obtained from the patient, we analyzed the expression of the mutated alleles by quantitative real time PCR and found slightly lower levels of expression of the EPM2A gene respect to control cells. However, by Western blotting we were unable to detect endogenous levels of the protein in crude extracts from patient fibroblasts. The Y112X mutation would render a truncated protein lacking the phosphatase domain and likely degraded. Since minute amounts of laforin-N163D might still play a role in cell physiology, we analyzed the biochemical characteristics of the N163D mutation. We found that recombinant laforin N163D protein was as stable as wild type and exhibited near wild type phosphatase activity towards biologically relevant substrates. On the contrary, it showed a severe impairment in the interaction profile with previously identified laforin binding partners. These results lead us to conclude that the slow progression of the disease present in this patient could be either due to the specific biochemical properties of laforin N163D or to the presence of alternative genetic modifying factors separate from pathogenicity.


Asunto(s)
Enfermedad de Lafora/genética , Mutación/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Adulto , Progresión de la Enfermedad , Femenino , Expresión Génica , Células HEK293 , Humanos , Inmunoprecipitación , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Monoéster Fosfórico Hidrolasas/metabolismo , Transfección
16.
Curr Opin Struct Biol ; 40: 62-69, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27498086

RESUMEN

Glucan phosphatases are functionally conserved at the enzymatic level, dephosphorylating glycogen in animals and starch in plants. The human glucan phosphatase laforin is the founding member of the family and it is comprised of a carbohydrate binding module (CBM) domain followed by a dual specificity phosphatase (DSP) domain. Plants encode two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a DSP domain followed by a CBM domain, while LSF2 contains a DSP domain and lacks a CBM. This review demonstrates how glucan phosphatase function is conserved and highlights how each family member employs a unique mechanism to bind and dephosphorylate glucan substrates.


Asunto(s)
Glucanos/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/enzimología , Animales , Humanos , Fosforilación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA