Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555384

RESUMEN

Nodularin (NOD) is a potent toxin produced by Nodularia spumigena cyanobacteria. Usually, NOD co-exists with other microcystins in environmental waters, a class of cyanotoxins secreted by certain cyanobacteria species, which makes identification difficult in the case of mixed toxins. Herein we report a complete theoretical DFT-vibrational Raman characterization of NOD along with the experimental drop-coating deposition Raman (DCDR) technique. In addition, we used the vibrational characterization to probe SERS analysis of NOD using colloidal silver nanoparticles (AgNPs), commercial nanopatterned substrates with periodic inverted pyramids (KlariteTM substrate), hydrophobic Tienta® SpecTrimTM slides, and in-house fabricated periodic nanotrenches by nanoimprint lithography (NIL). The 532 nm excitation source provided more well-defined bands even at LOD levels, as well as the best performance in terms of SERS intensity. This was reflected by the results obtained with the KlariteTM substrate and the silver-based colloidal system, which were the most promising detection approaches, providing the lowest limits of detection. A detection limit of 8.4 × 10-8 M was achieved for NOD in solution by using AgNPs. Theoretical computation of the complex vibrational modes of NOD was used for the first time to unambiguously assign all the specific vibrational Raman bands.


Asunto(s)
Cianobacterias , Nanopartículas del Metal , Plata , Cianobacterias/química , Nodularia , Espectrometría Raman/métodos
2.
Biosensors (Basel) ; 13(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37232860

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) applications in clinical diagnosis and spectral pathology are increasing due to the potential of the technique to bio-barcode incipient and differential diseases via real-time monitoring of biomarkers in fluids and in real-time via biomolecular fingerprinting. Additionally, the rapid advancements in micro/nanotechnology have a visible influence in all aspects of science and life. The miniaturization and enhanced properties of materials at the micro/nanoscale transcended the confines of the laboratory and are revolutionizing domains such as electronics, optics, medicine, and environmental science. The societal and technological impact of SERS biosensing by using semiconductor-based nanostructured smart substrates will be huge once minor technical pitfalls are solved. Herein, challenges in clinical routine testing are addressed in order to understand the context of how SERS can perform in real, in vivo sampling and bioassays for early neurodegenerative disease (ND) diagnosis. The main interest in translating SERS into clinical practice is reinforced by the practical advantages: portability of the designed setups, versatility in using nanomaterials of various matter and costs, readiness, and reliability. As we will present in this review, in the frame of technology readiness levels (TRL), the current maturity reached by semiconductor-based SERS biosensors, in particular that of zinc oxide (ZnO)-based hybrid SERS substrates, is situated at the development level TRL 6 (out of 9 levels). Three-dimensional, multilayered SERS substrates that provide additional plasmonic hot spots in the z-axis are of key importance in designing highly performant SERS biosensors for the detection of ND biomarkers.


Asunto(s)
Técnicas Biosensibles , Enfermedades Neurodegenerativas , Óxido de Zinc , Humanos , Óxido de Zinc/química , Reproducibilidad de los Resultados , Enfermedades Neurodegenerativas/diagnóstico , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Biomarcadores
3.
Materials (Basel) ; 16(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37109860

RESUMEN

This paper is focused on the utilization of hybrid catalysts obtained from layered double hydroxides containing molybdate as the compensation anion (Mo-LDH) and graphene oxide (GO) in advanced oxidation using environmentally friendly H2O2 as the oxidation agent for the removal of indigo carmine dye (IC) from wastewaters at 25 °C using 1 wt.% catalyst in the reaction mixture. Five samples of Mo-LDH-GO composites containing 5, 10, 15, 20, and 25 wt% GO labeled as HTMo-xGO (where HT is the abbreviation used for Mg/Al in the brucite type layer of the LDH and x stands for the concentration of GO) have been synthesized by coprecipitation at pH 10 and characterized by XRD, SEM, Raman, and ATR-FTIR spectroscopy, determination of the acid and base sites, and textural analysis by nitrogen adsorption/desorption. The XRD analysis confirmed the layered structure of the HTMo-xGO composites and GO incorporation in all samples has been proved by Raman spectroscopy. The most efficient catalyst was found to be the catalyst that contained 20%wt. GO, which allowed the removal of IC to reach 96.6%. The results of the catalytic tests indicated a strong correlation between catalytic activity and textural properties as well as the basicity of the catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA