Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 40(47): 9121-9136, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33051351

RESUMEN

Abnormalities in interactions between sensory neurons and Schwann cells (SCs) may result in heightened pain processing and chronic pain states. We previously reported that SCs express the NMDA receptor (NMDA-R), which activates cell signaling in response to glutamate and specific protein ligands, such as tissue-type plasminogen activator. Herein, we genetically targeted grin1 encoding the essential GluN1 NMDA-R subunit, conditionally in SCs, to create a novel mouse model in which SCs are NMDA-R-deficient (GluN1- mice). These mice demonstrated increased sensitivity to light touch, pinprick, and thermal hyperalgesia in the absence of injury, without associated changes in motor function. Ultrastructural analysis of adult sciatic nerve in GluN1- mice revealed increases in the density of Aδ fibers and Remak bundles and a decrease in the density of Aß fibers, without altered g-ratios. Abnormalities in adult Remak bundle ultrastructure were also present including aberrant C-fiber ensheathment, distances between axons, and increased poly-axonal pockets. Developmental and post radial sorting defects contributed to altered nerve fiber densities in adult. Uninjured sciatic nerves in GluN1- mice did not demonstrate an increase in neuroinflammatory infiltrates. Transcriptome profiling of dorsal root ganglia (DRGs) revealed 138 differentially regulated genes in GluN1- mice. One third of the regulated genes are known to be involved in pain processing, including sprr1a, npy, fgf3, atf3, and cckbr, which were significantly increased. The intraepidermal nerve fiber density (IENFD) was significantly decreased in the skin of GluN1- mice. Collectively, these findings demonstrate that SC NMDA-R is essential for normal PNS development and for preventing development of pain states.SIGNIFICANCE STATEMENT Chronic unremitting pain is a prevalent medical condition; however, the molecular mechanisms that underlie heightened pain processing remain incompletely understood. Emerging data suggest that abnormalities in Schwann cells (SCs) may cause neuropathic pain. We established a novel mouse model for small fiber neuropathy (SFN) in which grin1, the gene that encodes the NMDA receptor (NMDA-R) GluN1 subunit, is deleted in SCs. These mice demonstrate hypersensitivity in pain processing in the absence of nerve injury. Changes in the density of intraepidermal small fibers, the ultrastructure of Remak bundles, and the transcriptome of dorsal root ganglia (DRGs) provide possible explanations for the increase in pain processing. Our results support the hypothesis that abnormalities in communication between sensory nerve fibers and SCs may result in pain states.


Asunto(s)
Hiperalgesia/genética , Proteínas del Tejido Nervioso/genética , Dolor/genética , Dolor/fisiopatología , Receptores de N-Metil-D-Aspartato/genética , Células de Schwann/ultraestructura , Animales , Axones/fisiología , Axones/ultraestructura , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/deficiencia , Estimulación Física , Cultivo Primario de Células , Receptores de N-Metil-D-Aspartato/deficiencia , Nervio Ciático/ultraestructura , Transducción de Señal
2.
Glia ; 67(6): 1210-1224, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30746765

RESUMEN

Following injury to the peripheral nervous system (PNS), microglia in the spinal dorsal horn (SDH) become activated and contribute to the development of local neuro-inflammation, which may regulate neuropathic pain processing. The molecular mechanisms that control microglial activation and its effects on neuropathic pain remain incompletely understood. We deleted the gene encoding the plasma membrane receptor, LDL Receptor-related Protein-1 (LRP1), conditionally in microglia using two distinct promoter-Cre recombinase systems in mice. LRP1 deletion in microglia blocked development of tactile allodynia, a neuropathic pain-related behavior, after partial sciatic nerve ligation (PNL). LRP1 deletion also substantially attenuated microglial activation and pro-inflammatory cytokine expression in the SDH following PNL. Because LRP1 shedding from microglial plasma membranes generates a highly pro-inflammatory soluble product, we demonstrated that factors which activate spinal cord microglia, including lipopolysaccharide (LPS) and colony-stimulating factor-1, promote LRP1 shedding. Proteinases known to mediate LRP1 shedding, including ADAM10 and ADAM17, were expressed at increased levels in the SDH after PNL. Furthermore, LRP1-deficient microglia in cell culture expressed significantly decreased levels of interleukin-1ß and interleukin-6 when treated with LPS. We conclude that in the SDH, microglial LRP1 plays an important role in establishing and/or amplifying local neuro-inflammation and neuropathic pain following PNS injury. The responsible mechanism most likely involves proteolytic release of LRP1 from the plasma membrane to generate a soluble product that functions similarly to pro-inflammatory cytokines in mediating crosstalk between cells in the SDH and in regulating neuropathic pain.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Microglía/metabolismo , Neuralgia/metabolismo , Percepción del Dolor/fisiología , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Inflamación/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuralgia/genética
3.
Blood ; 130(11): 1364-1374, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28684538

RESUMEN

Tissue-type plasminogen activator (tPA) is the major intravascular activator of fibrinolysis and a ligand for receptors involved in cell signaling. In cultured macrophages, tPA inhibits the response to lipopolysaccharide (LPS) by a pathway that apparently requires low-density lipoprotein receptor-related protein-1 (LRP1). Herein, we show that the mechanism by which tPA neutralizes LPS involves rapid reversal of IκBα phosphorylation. tPA independently induced transient IκBα phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activation in macrophages; however, these events did not trigger inflammatory mediator expression. The tPA signaling response was distinguished from the signature of signaling events elicited by proinflammatory LRP1 ligands, such as receptor-associated protein (RAP), which included sustained IκBα phosphorylation and activation of all 3 MAP kinases (ERK1/2, c-Jun kinase, and p38 MAP kinase). Enzymatically active and inactive tPA demonstrated similar immune modulatory activity. Intravascular administration of enzymatically inactive tPA in mice blocked the toxicity of LPS. In mice not treated with exogenous tPA, the plasma concentration of endogenous tPA increased 3-fold in response to LPS, to 116 ± 15 pM, but remained below the approximate threshold for eliciting anti-inflammatory cell signaling in macrophages (∼2.0 nM). This threshold is readily achieved in patients when tPA is administered therapeutically for stroke. In addition to LRP1, we demonstrate that the N-methyl-D-aspartic acid receptor (NMDA-R) is expressed by macrophages and essential for anti-inflammatory cell signaling and regulation of cytokine expression by tPA. The NMDA-R and Toll-like receptor-4 were not required for proinflammatory RAP signaling. By mediating the tPA response in macrophages, the NMDA-R provides a pathway by which the fibrinolysis system may regulate innate immunity.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Activador de Tejido Plasminógeno/farmacología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Ligandos , Lipopolisacáridos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 113(5): 1369-74, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787872

RESUMEN

LDL receptor-related protein-1 (LRP1) is an endocytic and cell-signaling receptor. In mice in which LRP1 is deleted in myeloid cells, the response to lipopolysaccharide (LPS) was greatly exacerbated. LRP1 deletion in macrophages in vitro, under the control of tamoxifen-activated Cre-ER(T) fusion protein, robustly increased expression of proinflammatory cytokines and chemokines. In LRP1-expressing macrophages, proinflammatory mediator expression was regulated by LRP1 ligands in a ligand-specific manner. The LRP1 agonists, α2-macroglobulin and tissue-type plasminogen activator, attenuated expression of inflammatory mediators, even in the presence of LPS. The antagonists, receptor-associated protein (RAP) and lactoferrin (LF), and LRP1-specific antibody had the entirely opposite effect, promoting inflammatory mediator expression and mimicking LRP1 deletion. NFκB was rapidly activated in response to RAP and LF and responsible for the initial increase in expression of proinflammatory mediators. RAP and LF also significantly increased expression of microRNA-155 (miR-155) after a lag phase of about 4 h. miR-155 expression reflected, at least in part, activation of secondary cell-signaling pathways downstream of TNFα. Although miR-155 was not involved in the initial induction of cytokine expression in response to LRP1 antagonists, miR-155 was essential for sustaining the proinflammatory response. We conclude that LRP1, NFκB, and miR-155 function as members of a previously unidentified system that has the potential to inhibit or sustain inflammation, depending on the continuum of LRP1 ligands present in the macrophage microenvironment.


Asunto(s)
Inflamación/prevención & control , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Macrófagos/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Animales , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones
5.
J Biol Chem ; 292(45): 18699-18712, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28972143

RESUMEN

In the CNS, microglia are activated in response to injury or infection and in neurodegenerative diseases. The endocytic and cell signaling receptor, LDL receptor-related protein-1 (LRP1), is reported to suppress innate immunity in macrophages and oppose microglial activation. The goal of this study was to identify novel mechanisms by which LRP1 may regulate microglial activation. Using primary cultures of microglia isolated from mouse brains, we demonstrated that LRP1 gene silencing increases expression of proinflammatory mediators; however, the observed response was modest. By contrast, the LRP1 ligand, receptor-associated protein (RAP), robustly activated microglia, and its activity was attenuated in LRP1-deficient cells. An important element of the mechanism by which RAP activated microglia was its ability to cause LRP1 shedding from the plasma membrane. This process eliminated cellular LRP1, which is anti-inflammatory, and generated a soluble product, shed LRP1 (sLRP1), which is potently proinflammatory. Purified sLRP1 induced expression of multiple proinflammatory cytokines and the mRNA encoding inducible nitric-oxide synthase in both LRP1-expressing and -deficient microglia. LPS also stimulated LRP1 shedding, as did the heat-shock protein and LRP1 ligand, calreticulin. Other LRP1 ligands, including α2-macroglobulin and tissue-type plasminogen activator, failed to cause LRP1 shedding. Treatment of microglia with a metalloproteinase inhibitor inhibited LRP1 shedding and significantly attenuated RAP-induced cytokine expression. RAP and sLRP1 both caused neuroinflammation in vivo when administered by stereotaxic injection into mouse spinal cords. Collectively, these results suggest that LRP1 shedding from microglia may amplify and sustain neuroinflammation in response to proinflammatory stimuli.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Corteza Cerebral/metabolismo , Mediadores de Inflamación/agonistas , Microglía/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Recién Nacidos , Calreticulina/genética , Calreticulina/metabolismo , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/inmunología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Ligandos , Lipopolisacáridos/toxicidad , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/citología , Microglía/efectos de los fármacos , Microglía/inmunología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Interferencia de ARN , Receptores de LDL/agonistas , Receptores de LDL/antagonistas & inhibidores , Receptores de LDL/genética , Proteínas Recombinantes/metabolismo , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética
6.
Glia ; 66(8): 1577-1590, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520865

RESUMEN

Sensory neurons in the PNS demonstrate substantial capacity for regeneration following injury. Recent studies have identified changes in the transcriptome of sensory neurons, which are instrumental for axon regeneration. The role of Schwann cells (SCs) in mediating these changes remains undefined. We tested the hypothesis that SCs regulate expression of genes in sensory neurons before and after PNS injury by comparing mice in which LDL Receptor-related Protein-1 (LRP1) is deleted in SCs (scLRP1-/- mice) with wild-type (scLRP1+/+ ) littermates. LRP1 is an endocytic and cell-signaling receptor that is necessary for normal SC function and the SC response to nerve injury. scLRP1-/- mice represent a characterized model in which the SC response to nerve injury is abnormal. Adult DRG neurons, isolated from scLRP1-/- mice, with or without a conditioning nerve lesion, demonstrated increased neurite outgrowth when cultured ex vivo, compared with neurons from wild-type mice. Following sciatic nerve crush injury, nerve regeneration was accelerated in vivo in scLRP1-/- mice. These results were explained by transcriptional activation of RAGs in DRG neurons in scLRP1-/- mice prior to nerve injury. Although the presence of abnormal SCs in scLRP1-/- mice primed DRG neurons for repair, nerve regeneration in scLRP1-/- mice resulted in abnormalities in ultrastructure, principally in Remak bundles, and with the onset of neuropathic pain. These results demonstrate the importance of SCs in controlling RAG expression by neurons and the potential for this process to cause chronic pain when abnormal. The SC may represent an important target for preventing pain following PNS injury.


Asunto(s)
Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Células de Schwann/citología , Animales , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Transgénicos , Proyección Neuronal/fisiología , Traumatismos de los Nervios Periféricos/patología , Nervio Ciático/metabolismo , Neuropatía Ciática/patología , Células Receptoras Sensoriales/metabolismo
7.
Stroke ; 46(2): 520-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25550371

RESUMEN

BACKGROUND AND PURPOSE: Until now, except thrombolysis, the therapeutical strategies targeting the acute phase of cerebral ischemia have been proven ineffective, and no approach is available to attenuate the delayed cell death mechanisms and the resulting functional deficits in the late phase. Then, we investigated whether a targeted and delayed delivery of pituitary adenylate cyclase-activating polypeptide (PACAP), a peptide known to exert neuroprotective activities, may dampen delayed pathophysiological processes improving functional recovery. METHODS: Three days after permanent focal ischemia, PACAP-producing stem cells were transplanted intracerebro ventricularly in nonimmunosuppressed mice. At 7 and 14 days post ischemia, the effects of this stem cell-based targeted delivery of PACAP on functional recovery, volume lesions, and inflammatory processes were analyzed. RESULTS: The delivery of PACAP in the vicinity of the infarct zone 3 days post stroke promotes fast, stable, and efficient functional recovery. This was correlated with a modulation of the postischemic inflammatory response. Transcriptomic and Ingenuity Pathway Analysis-based bioinformatic analyses identified several gene networks, functions, and key transcriptional factors, such as nuclear factor-κB, C/EBP-ß, and Notch/RBP-J as PACAP's potential targets. Such PACAP-dependent immunomodulation was further confirmed by morphometric and phenotypic analyses of microglial cells showing increased number of Arginase-1(+) cells in mice treated with PACAP-expressing cells specifically, demonstrating the redirection of the microglial response toward a neuroprotective M2 phenotype. CONCLUSIONS: Our results demonstrated that immunomodulatory strategies capable of redirecting the microglial response toward a neuroprotective M2 phenotype in the late phase of brain ischemia could represent attractive options for stroke treatment in a new and unexploited therapeutical window.


Asunto(s)
Polaridad Celular/fisiología , Macrófagos/metabolismo , Microglía/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación , Recuperación de la Función/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Polaridad Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Intraventriculares , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Microglía/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/terapia , Factores de Tiempo
8.
Sci Rep ; 9(1): 19291, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848365

RESUMEN

The goal of stem cell therapy for spinal cord injury (SCI) is to restore motor function without exacerbating pain. Induced pluripotent stem cells (iPSC) may be administered by autologous transplantation, avoiding immunologic challenges. Identifying strategies to optimize iPSC-derived neural progenitor cells (hiNPC) for cell transplantation is an important objective. Herein, we report a method that takes advantage of the growth factor-like and anti-inflammatory activities of the fibrinolysis protease, tissue plasminogen activator tPA, without effects on hemostasis. We demonstrate that conditioning hiNPC with enzymatically-inactive tissue-type plasminogen activator (EI-tPA), prior to grafting into a T3 lesion site in a clinically relevant severe SCI model, significantly improves motor outcomes. EI-tPA-primed hiNPC grafted into lesion sites survived, differentiated, acquired markers of motor neuron maturation, and extended ßIII-tubulin-positive axons several spinal segments below the lesion. Importantly, only SCI rats that received EI-tPA primed hiNPC demonstrated significantly improved motor function, without exacerbating pain. When hiNPC were treated with EI-tPA in culture, NMDA-R-dependent cell signaling was initiated, expression of genes associated with stemness (Nestin, Sox2) was regulated, and thrombin-induced cell death was prevented. EI-tPA emerges as a novel agent capable of improving the efficacy of stem cell therapy in SCI.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Traumatismos de la Médula Espinal/terapia , Activador de Tejido Plasminógeno/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Ratas , Recuperación de la Función , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Trasplante de Células Madre , Células Madre/efectos de los fármacos , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/genética
9.
PLoS One ; 11(12): e0168418, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27977780

RESUMEN

In high grade glioma (HGG), extensive tumor cell infiltration of normal brain typically precludes identifying effective margins for surgical resection or irradiation. Pertussis toxin (PT) is a multimeric complex that inactivates diverse Gi/o G-protein coupled receptors (GPCRs). Despite the broad continuum of regulatory events controlled by GPCRs, PT may be applicable as a therapeutic. We have shown that the urokinase receptor (uPAR) is a major driver of HGG cell migration. uPAR-initiated cell-signaling requires a Gi/o GPCR, N-formyl Peptide Receptor 2 (FPR2), as an essential co-receptor and is thus, PT-sensitive. Herein, we show that PT robustly inhibits migration of three separate HGG-like cell lines that express a mutated form of the EGF Receptor (EGFR), EGFRvIII, which is constitutively active. PT also almost completely blocked the ability of HGG cells to invade Matrigel. In the equivalent concentration range (0.01-1.0 µg/mL), PT had no effect on cell survival and only affected proliferation of one cell line. Neutralization of EGFRvIII expression in HGG cells, which is known to activate uPAR-initiated cell-signaling, promoted HGG cell migration. The increase in HGG cell migration, induced by EGFRvIII neutralization, was entirely blocked by silencing FPR2 gene expression or by treating the cells with PT. When U87MG HGG cells were cultured as suspended neurospheres in serum-free, growth factor-supplemented medium, uPAR expression was increased. HGG cells isolated from neurospheres migrated through Transwell membranes without loss of cell contacts; this process was inhibited by PT by >90%. PT also inhibited expression of vimentin by HGG cells; vimentin is associated with epithelial-mesenchymal transition and worsened prognosis. We conclude that PT may function as a selective inhibitor of HGG cell migration and invasion.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioma/metabolismo , Toxina del Pertussis/farmacología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioma/genética , Humanos , Microscopía Fluorescente , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lipoxina/genética , Receptores de Lipoxina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA