Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401627, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773906

RESUMEN

Controlling the magnetic anisotropy of molecular layers assembled on a surface is one of the challenges that needs to be addressed to create the next-generation spintronic devices. Recently, metal complexes that show a reversible solid-state switch of their magnetic anisotropy in response to physical stimuli, such as temperature and magnetic field, have been discovered. The complex Nd(trensal) (H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine) is predicted to exhibit such property. An ultra-thin film of Nd(trensal) is deposited on highly ordered pyrolytic graphite as a proof-of-concept system to show that this property can be retained at the nanoscale on a layered material. By combining single crystal magnetometric measurements and synchrotron X-ray-based absorption techniques, supported by multiplet ligand field simulations based on the trigonal crystal field surrounding the lanthanide centre, it is demonstrated that changing the temperature reverses the magnetic anisotropy of an ordered film of Nd(trensal), thus opening significant perspectives for the realization of a novel family of temperature-controlled molecular spintronic devices.

2.
Chem Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39156928

RESUMEN

Depositing single paramagnetic molecules on surfaces for sensing and quantum computing applications requires subtle topological control. To overcome issues that are often encountered with sandwich metal complexes, we exploit here the low symmetry architecture and suitable vaporability of mixed-sandwich [FluTi(cot)], Flu = fluorenyl, cot = cyclooctatetraene, to drive submonolayer coverage and select an adsorption configuration that preserves the spin of molecules deposited on Au(111). Electron paramagnetic resonance spectroscopy and ab initio quantum computation evidence a d z 2 ground state that protects the spin from phonon-induced relaxation. Additionally, computed and measured spin coherence times exceed 10 µs despite the molecules being rich in hydrogen. A thorough submonolayer investigation by scanning tunneling microscopy, X-ray photoelectron and absorption spectrocopies and X-ray magnetic circular dichroism measurements supported by DFT calculations reveals that the most stable configuration, with the fluorenyl in contact with the metal surface, prevents titanium(iii) oxidation and spin delocalization to the surface. This is a necessary condition for single molecular spin qubit addressing on surfaces.

3.
Inorg Chem Front ; 11(1): 186-195, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38221947

RESUMEN

We herein investigate the heterobimetallic lantern complexes [PtVO(SOCR)4] as charge neutral electronic qubits based on vanadyl complexes (S = 1/2) with nuclear spin-free donor atoms. The derivatives with R = Me (1) and Ph (2) give highly resolved X-band EPR spectra in frozen CH2Cl2/toluene solution, which evidence the usual hyperfine coupling with the 51V nucleus (I = 7/2) and an additional superhyperfine interaction with the I = 1/2 nucleus of the 195Pt isotope (natural abundance ca. 34%). DFT calculations ascribe the spin density delocalization on the Pt2+ ion to a combination of π and δ pathways, with the former representing the predominant channel. Spin relaxation measurements in frozen CD2Cl2/toluene-d8 solution between 90 and 10 K yield Tm values (1-6 µs in 1 and 2-11 µs in 2) which compare favorably with those of known vanadyl-based qubits in similar matrices. Coherent spin manipulations indeed prove possible at 70 K, as shown by the observation of Rabi oscillations in nutation experiments. The results indicate that the heavy Group 10 metal ion is not detrimental to the coherence properties of the vanadyl moiety and that Pt-VO lanterns can be used as robust spin-coherent building blocks in materials science and quantum technologies.

4.
Chem Sci ; 15(1): 113-123, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131074

RESUMEN

Complexes of lanthanide(iii) ions (Ln) with tetraazacyclododecane-N,N',N'',N'''-tetraacetate (DOTA) are a benchmark in the field of magnetism due to their well-investigated and sometimes surprising features. Ab initio calculations suggest that the ninth ligand, an axial water molecule, is key in defining the magnetic properties because it breaks the potential C4 symmetry of the resulting complexes. In this paper, we experimentally isolate the role of the water molecule by excluding it from the metal coordination sphere without altering the chemical structure of the ligand. Our complexes are therefore designed to be geometrically tetragonal and strict crystallographic symmetry is achieved by exploiting a combination of solution ionic strength and solid state packing effects. A thorough multitechnique approach has been used to unravel the electronic structure and magnetic anisotropy of the complexes. Moreover, the geometry enhancement allows us to predict, using only one angle obtained from the crystal structure, the ground state composition of all the studied derivatives (Ln = Tb to Yb). Therefore, these systems also provide an excellent platform to test the validity and limitations of the ab initio methods. Our combined experimental and theoretical investigation proves that the water molecule is indeed key in defining the magnetic anisotropy and the slow relaxation of these complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA