Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(2): 210-222, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065709

RESUMEN

Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos , Linfocitos B/metabolismo , Linfocitos B/patología , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Variación Genética , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Proyectos de Investigación , Secuenciación del Exoma/estadística & datos numéricos
2.
J Med Genet ; 59(4): 393-398, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33879512

RESUMEN

PURPOSE: The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. METHODS: Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. RESULTS: Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. CONCLUSIONS: Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.


Asunto(s)
Exoma , Enfermedades Raras , Exoma/genética , Humanos , Enfermedades Raras/genética , Estudios Retrospectivos , Secuenciación del Exoma , Carga de Trabajo
3.
J Allergy Clin Immunol ; 149(1): 369-378, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991581

RESUMEN

BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities.


Asunto(s)
Enfermedades Genéticas Congénitas/clasificación , Enfermedades del Sistema Inmune/clasificación , Enfermedades Raras/clasificación , Ontologías Biológicas , Humanos , Fenotipo
4.
Hum Mol Genet ; 28(22): 3704-3723, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304552

RESUMEN

The craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.


Asunto(s)
Disostosis Mandibulofacial/genética , Factores de Elongación de Péptidos/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Sistemas CRISPR-Cas , Proliferación Celular/genética , Anomalías Craneofaciales/genética , Estrés del Retículo Endoplásmico/genética , Exones , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Haploinsuficiencia/genética , Humanos , Intrones , Mutación , Factores de Elongación de Péptidos/metabolismo , Fenotipo , Precursores del ARN/metabolismo , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Análisis de Secuencia de ARN/métodos , Empalmosomas/genética
5.
Cytokine ; 144: 155533, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33941444

RESUMEN

Type I interferons are essential for host response to viral infections, while dysregulation of their response can result in autoinflammation or autoimmunity. Among IFNα (alpha) responses, 13 subtypes exist that signal through the same receptor, but have been reported to have different effector functions. However, the lack of available tools for discriminating these closely related subtypes, in particular at the protein level, has restricted the study of their differential roles in disease. We developed a digital ELISA with specificity and high sensitivity for the IFNα2 subtype. Application of this assay, in parallel with our previously described pan-IFNα assay, allowed us to study different IFNα protein responses following cellular stimulation and in diverse patient cohorts. We observed different ratios of IFNα protein responses between viral infection and autoimmune patients. This analysis also revealed a small percentage of autoimmune patients with high IFNα2 protein measurements but low pan-IFNα measurements. Correlation with an ISG score and functional activity showed that in this small sub group of patients, IFNα2 protein measurements did not reflect its biological activity. This unusual phenotype was partly explained by the presence of anti-IFNα auto-antibodies in a subset of autoimmune patients. This study reports ultrasensitive assays for the study of IFNα proteins in patient samples and highlights the insights that can be obtained from the use of multiple phenotypic readouts in translational and clinical studies.


Asunto(s)
Antivirales/inmunología , Autoinmunidad/inmunología , Interferón-alfa/inmunología , Virosis/inmunología , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Health Expect ; 24(3): 833-842, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749957

RESUMEN

BACKGROUND: The coronavirus disease (COVID-19) pandemic has had far-reaching effects upon lives, healthcare systems and society. Some who had an apparently 'mild' COVID-19 infection continue to suffer from persistent symptoms, including chest pain, breathlessness, fatigue, cognitive impairment, paraesthesia, muscle and joint pains. This has been labelled 'long COVID'. This paper reports the experiences of doctors with long COVID. METHODS: A qualitative study; interviews with doctors experiencing persistent symptoms were conducted by telephone or video call. Interviews were transcribed and analysis conducted using an inductive and thematic approach. RESULTS: Thirteen doctors participated. The following themes are reported: making sense of symptoms, feeling let down, using medical knowledge and connections, wanting to help and be helped, combining patient and professional identity. Experiencing long COVID can be transformative: many expressed hope that good would come of their experiences. Distress related to feelings of being 'let down' and the hard work of trying to access care. Participants highlighted that they felt better able to care for, and empathize with, patients with chronic conditions, particularly where symptoms are unexplained. CONCLUSIONS: The study adds to the literature on the experiences of doctors as patients, in particular where evidence is emerging and the patient has to take the lead in finding solutions to their problems and accessing their own care. PATIENT AND PUBLIC CONTRIBUTION: The study was developed with experts by experience (including co-authors HA and TAB) who contributed to the protocol and ethics application, and commented on analysis and implications. All participants were given the opportunity to comment on findings.


Asunto(s)
COVID-19/complicaciones , Médicos/psicología , COVID-19/epidemiología , Emociones , Humanos , Entrevistas como Asunto , Pandemias , Investigación Cualitativa , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
7.
Hum Mutat ; 41(4): 837-849, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31898846

RESUMEN

IFIH1 gain-of-function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi-Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate.


Asunto(s)
Mutación con Ganancia de Función , Estudios de Asociación Genética , Genotipo , Helicasa Inducida por Interferón IFIH1/genética , Fenotipo , Alelos , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Helicasa Inducida por Interferón IFIH1/química , Masculino , Modelos Moleculares , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/genética , Conformación Proteica , Relación Estructura-Actividad
8.
Neuropediatrics ; 51(3): 178-184, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31779033

RESUMEN

BACKGROUND: A homozygous founder mutation in MTPAP/TENT6, encoding mitochondrial poly(A) polymerase (MTPAP), was first reported in six individuals of Old Order Amish descent demonstrating an early-onset, progressive spastic ataxia with optic atrophy and learning difficulties. MTPAP contributes to the regulation of mitochondrial gene expression through the polyadenylation of mitochondrially encoded mRNAs. Mitochondrial mRNAs with severely truncated poly(A) tails were observed in affected individuals, and mitochondrial protein expression was altered. OBJECTIVE: To determine the genetic basis of a perinatal encephalopathy associated with stereotyped neuroimaging and infantile death in three patients from two unrelated families. METHODS: Whole-exome sequencing was performed in two unrelated patients and the unaffected parents of one of these individuals. Variants and familial segregation were confirmed by Sanger sequencing. Polyadenylation of mitochondrial transcripts and de novo synthesis of mitochondrial proteins were assessed in patient's fibroblasts. RESULTS: Compound heterozygous p.Ile428Thr and p.Arg523Trp substitutions in MTPAP were recorded in two affected siblings from one family, and a homozygous p.Ile385Phe missense variant identified in a further affected child from a second sibship. Mitochondrial poly(A) tail analysis demonstrated shorter posttranscriptional additions to the mitochondrial transcripts, as well as an altered expression of mitochondrial proteins in the fibroblasts of the two siblings compared with healthy controls. CONCLUSION: Mutations in MTPAP likely cause an autosomal recessive perinatal encephalopathy with lethality in the first year of life.


Asunto(s)
Encefalopatías/genética , Encefalopatías/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Fibroblastos/metabolismo , Proteínas Mitocondriales/metabolismo , Femenino , Humanos , Lactante , Muerte del Lactante , Masculino , Proteínas Mitocondriales/genética , Linaje , Secuenciación del Exoma
9.
J Allergy Clin Immunol ; 143(4): 1482-1495, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30170123

RESUMEN

BACKGROUND: Caspase activation and recruitment domain 11 (CARD11) encodes a scaffold protein in lymphocytes that links antigen receptor engagement with downstream signaling to nuclear factor κB, c-Jun N-terminal kinase, and mechanistic target of rapamycin complex 1. Germline CARD11 mutations cause several distinct primary immune disorders in human subjects, including severe combined immune deficiency (biallelic null mutations), B-cell expansion with nuclear factor κB and T-cell anergy (heterozygous, gain-of-function mutations), and severe atopic disease (loss-of-function, heterozygous, dominant interfering mutations), which has focused attention on CARD11 mutations discovered by using whole-exome sequencing. OBJECTIVES: We sought to determine the molecular actions of an extended allelic series of CARD11 and to characterize the expanding range of clinical phenotypes associated with heterozygous CARD11 loss-of-function alleles. METHODS: Cell transfections and primary T-cell assays were used to evaluate signaling and function of CARD11 variants. RESULTS: Here we report on an expanded cohort of patients harboring novel heterozygous CARD11 mutations that extend beyond atopy to include other immunologic phenotypes not previously associated with CARD11 mutations. In addition to (and sometimes excluding) severe atopy, heterozygous missense and indel mutations in CARD11 presented with immunologic phenotypes similar to those observed in signal transducer and activator of transcription 3 loss of function, dedicator of cytokinesis 8 deficiency, common variable immunodeficiency, neutropenia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome. Pathogenic variants exhibited dominant negative activity and were largely confined to the CARD or coiled-coil domains of the CARD11 protein. CONCLUSION: These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Guanilato Ciclasa/genética , Guanilato Ciclasa/inmunología , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Adulto , Femenino , Humanos , Masculino , Mutación , Fenotipo
10.
J Clin Immunol ; 39(1): 75-80, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30574673

RESUMEN

PURPOSE: Singleton-Merten syndrome manifests as dental dysplasia, glaucoma, psoriasis, aortic calcification, and skeletal abnormalities including tendon rupture and arthropathy. Pathogenic variants in IFIH1 have previously been associated with the classic Singleton-Merten syndrome, while variants in DDX58 has been described in association with a milder phenotype, which is suggested to have a better prognosis. We studied a family with severe, "classic" Singleton-Merten syndrome. METHODS: We undertook clinical phenotyping, next-generation sequencing, and functional studies of type I interferon production in patient whole blood and assessed the type I interferon promoter activity in HEK293 cells transfected with wild-type or mutant DDX58 stimulated with Poly I:C. RESULTS: We demonstrate a DDX58 autosomal dominant gain-of-function mutation, with constitutive upregulation of type I interferon. CONCLUSIONS: DDX58 mutations may be associated with the classic features of Singleton-Merten syndrome including dental dysplasia, tendon rupture, and severe cardiac sequela.


Asunto(s)
Enfermedades de la Aorta/genética , Proteína 58 DEAD Box/genética , Hipoplasia del Esmalte Dental/genética , Metacarpo/anomalías , Enfermedades Musculares/genética , Odontodisplasia/genética , Osteoporosis/genética , Calcificación Vascular/genética , Adulto , Línea Celular , Femenino , Mutación con Ganancia de Función/genética , Células HEK293 , Humanos , Interferón Tipo I/genética , Masculino , Persona de Mediana Edad , Fenotipo , Regiones Promotoras Genéticas/genética , Receptores Inmunológicos
11.
J Med Genet ; 54(1): 64-72, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27572252

RESUMEN

BACKGROUND: Disruptions of the FOXP2 gene, encoding a forkhead transcription factor, are the first known monogenic cause of a speech and language disorder. So far, mainly chromosomal rearrangements such as translocations or larger deletions affecting FOXP2 have been reported. Intragenic deletions or convincingly pathogenic point mutations in FOXP2 have up to date only been reported in three families. We thus aimed at a further characterisation of the mutational and clinical spectrum. METHODS: Chromosomal microarray testing, trio exome sequencing, multigene panel sequencing and targeted sequencing of FOXP2 were performed in individuals with variable developmental disorders, and speech and language deficits. RESULTS: We identified four different truncating mutations, two novel missense mutations within the forkhead domain and an intragenic deletion in FOXP2 in 14 individuals from eight unrelated families. Mutations occurred de novo in four families and were inherited from an affected parent in the other four. All index patients presented with various manifestations of language and speech impairment. Apart from two individuals with normal onset of speech, age of first words was between 4 and 7 years. Articulation difficulties such as slurred speech, dyspraxia, stuttering and poor pronunciation were frequently noted. Motor development was normal or only mildly delayed. Mild cognitive impairment was reported for most individuals. CONCLUSIONS: By identifying intragenic deletions or mutations in 14 individuals from eight unrelated families with variable developmental delay/cognitive impairment and speech and language deficits, we considerably broaden the mutational and clinical spectrum associated with aberrations in FOXP2.


Asunto(s)
Factores de Transcripción Forkhead/genética , Trastornos del Lenguaje/genética , Mutación Missense/genética , Mutación Puntual/genética , Eliminación de Secuencia/genética , Trastornos del Habla/genética , Discapacidades del Desarrollo/genética , Humanos , Masculino , Linaje , Habla/fisiología
12.
J Clin Immunol ; 37(2): 123-132, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27943079

RESUMEN

PURPOSE: Increased type I interferon is considered relevant to the pathology of a number of monogenic and complex disorders spanning pediatric rheumatology, neurology, and dermatology. However, no test exists in routine clinical practice to identify enhanced interferon signaling, thus limiting the ability to diagnose and monitor treatment of these diseases. Here, we set out to investigate the use of an assay measuring the expression of a panel of interferon-stimulated genes (ISGs) in children affected by a range of inflammatory diseases. DESIGN, SETTING, AND PARTICIPANTS: A cohort study was conducted between 2011 and 2016 at the University of Manchester, UK, and the Institut Imagine, Paris, France. RNA PAXgene blood samples and clinical data were collected from controls and symptomatic patients with a genetically confirmed or clinically well-defined inflammatory phenotype. The expression of six ISGs was measured by quantitative polymerase chain reaction, and the median fold change was used to calculate an interferon score (IS) for each subject compared to a previously derived panel of 29 controls (where +2 SD of the control data, an IS of >2.466, is considered as abnormal). Results were correlated with genetic and clinical data. RESULTS: Nine hundred ninety-two samples were analyzed from 630 individuals comprising symptomatic patients across 24 inflammatory genotypes/phenotypes, unaffected heterozygous carriers, and controls. A consistent upregulation of ISG expression was seen in 13 monogenic conditions (455 samples, 265 patients; median IS 10.73, interquartile range (IQR) 5.90-18.41), juvenile systemic lupus erythematosus (78 samples, 55 patients; median IS 10.60, IQR 3.99-17.27), and juvenile dermatomyositis (101 samples, 59 patients; median IS 9.02, IQR 2.51-21.73) compared to controls (78 samples, 65 subjects; median IS 0.688, IQR 0.427-1.196), heterozygous mutation carriers (89 samples, 76 subjects; median IS 0.862, IQR 0.493-1.942), and individuals with non-molecularly defined autoinflammation (89 samples, 69 patients; median IS 1.07, IQR 0.491-3.74). CONCLUSIONS AND RELEVANCE: An assessment of six ISGs can be used to define a spectrum of inflammatory diseases related to enhanced type I interferon signaling. If future studies demonstrate that the IS is a reactive biomarker, this measure may prove useful both in the diagnosis and the assessment of treatment efficacy.


Asunto(s)
Inflamación/etiología , Inflamación/metabolismo , Interferón Tipo I/metabolismo , Transducción de Señal , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Inflamación/diagnóstico , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
13.
Pediatr Blood Cancer ; 64(2): 306-310, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27718324

RESUMEN

Childhood-onset chronic and refractory cytopenias are rare and may be genetic in etiology. We report three pediatric cases of severe autoimmune thrombocytopenia or anemia associated with growth retardation and spastic diplegia with intracranial calcification. The identification of platyspondyly and metaphyseal lesions suggested a potential diagnosis of spondyloenchondrodysplasia (SPENCD), which was confirmed with the identification of biallelic ACP5 mutations. Two patients demonstrated elevated serum interferon alpha levels. Our report highlights ACP5-associated disease as a cause of childhood-onset autoimmune cytopenia, particularly combined with growth retardation and/or spasticity. Furthermore, a role for type I interferon in the pathogenesis of autoimmune cytopenias is supported.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/genética , Mutación/genética , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/genética , Púrpura Trombocitopénica Idiopática/complicaciones , Púrpura Trombocitopénica Idiopática/genética , Fosfatasa Ácida Tartratorresistente/genética , Edad de Inicio , Alelos , Enfermedades Autoinmunes/terapia , Niño , Preescolar , Femenino , Humanos , Masculino , Osteocondrodisplasias/terapia , Pronóstico , Púrpura Trombocitopénica Idiopática/terapia
14.
Neuropediatrics ; 48(3): 166-184, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28561207

RESUMEN

We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1. The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context.


Asunto(s)
Adenosina Desaminasa/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Interferón Tipo I/metabolismo , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Proteínas de Unión al ARN/genética , Adolescente , Adulto , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Biomarcadores/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Fenotipo , Adulto Joven
16.
J Clin Immunol ; 36(3): 220-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26951490

RESUMEN

PURPOSE: Spondyloenchondrodysplasia is a rare immuno-osseous dysplasia caused by biallelic mutations in ACP5. We aimed to provide a survey of the skeletal, neurological and immune manifestations of this disease in a cohort of molecularly confirmed cases. METHODS: We compiled clinical, genetic and serological data from a total of 26 patients from 18 pedigrees, all with biallelic ACP5 mutations. RESULTS: We observed a variability in skeletal, neurological and immune phenotypes, which was sometimes marked even between affected siblings. In total, 22 of 26 patients manifested autoimmune disease, most frequently autoimmune thrombocytopenia and systemic lupus erythematosus. Four patients were considered to demonstrate no clinical autoimmune disease, although two were positive for autoantibodies. In the majority of patients tested we detected upregulated expression of interferon-stimulated genes (ISGs), in keeping with the autoimmune phenotype and the likely immune-regulatory function of the deficient protein tartrate resistant acid phosphatase (TRAP). Two mutation positive patients did not demonstrate an upregulation of ISGs, including one patient with significant autoimmune disease controlled by immunosuppressive therapy. CONCLUSIONS: Our data expand the known phenotype of SPENCD. We propose that the OMIM differentiation between spondyloenchondrodysplasia and spondyloenchondrodysplasia with immune dysregulation is no longer appropriate, since the molecular evidence that we provide suggests that these phenotypes represent a continuum of the same disorder. In addition, the absence of an interferon signature following immunomodulatory treatments in a patient with significant autoimmune disease may indicate a therapeutic response important for the immune manifestations of spondyloenchondrodysplasia.


Asunto(s)
Enfermedades Autoinmunes/genética , Discapacidad Intelectual/genética , Lupus Eritematoso Sistémico/genética , Mutación , Osteocondrodisplasias/genética , Púrpura Trombocitopénica Idiopática/genética , Fosfatasa Ácida Tartratorresistente/genética , Adolescente , Adulto , Alelos , Autoanticuerpos/biosíntesis , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Huesos/inmunología , Huesos/patología , Encéfalo/inmunología , Encéfalo/patología , Niño , Preescolar , Femenino , Expresión Génica , Genotipo , Humanos , Discapacidad Intelectual/inmunología , Discapacidad Intelectual/patología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Masculino , Osteocondrodisplasias/inmunología , Osteocondrodisplasias/patología , Linaje , Fenotipo , Púrpura Trombocitopénica Idiopática/inmunología , Púrpura Trombocitopénica Idiopática/patología , Fosfatasa Ácida Tartratorresistente/deficiencia , Fosfatasa Ácida Tartratorresistente/inmunología
17.
Am J Med Genet A ; 170A(1): 170-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26395259

RESUMEN

We present a Caucasian female, who was diagnosed at 13 years of age with Temple syndrome (formerly referred to as "maternal UPD 14 phenotype") due to an epigenetic loss of methylation at IG-DMR/MEG3-DMR at the chromosome 14q32 imprinted locus. Clinical features were typical and included intra-uterine growth retardation (IUGR), low birth weight, hypotonia, and poor feeding in the neonatal period; and failure to thrive and developmental delay--particularly in relation to speech--in early childhood. Premature puberty, with short stature and truncal obesity, but normal intelligence, were the key features in teenage years. To date only eight patients with Temple syndrome due to an epigenetic error have been described and the etiology of the methylation defect is currently undetermined. In view of a tendency towards central obesity, patients are at potential risk of early-onset type 2 diabetes mellitus, as well as cardiovascular disease and they, therefore, require appropriate monitoring.


Asunto(s)
Cromosomas Humanos Par 14/genética , Metilación de ADN/genética , Impresión Genómica/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , ARN Largo no Codificante/genética , Disomía Uniparental/genética , Anomalías Múltiples/genética , Adolescente , Proteínas de Unión al Calcio , Discapacidades del Desarrollo/genética , Femenino , Humanos , Fenotipo , Disomía Uniparental/patología
20.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527803

RESUMEN

Inflammasomes are immune complexes whose activation leads to the release of pro-inflammatory cytokines IL-18 and IL-1ß. Type I IFNs play a role in fighting infection and stimulate the expression of IFN-stimulated genes (ISGs) involved in inflammation. Despite the importance of these cytokines in inflammation, the regulation of inflammasomes by type I IFNs remains poorly understood. Here, we analysed RNA-sequencing data from patients with monogenic interferonopathies and found an up-regulation of several inflammasome-related genes. To investigate the effect of type I IFN on the inflammasome, we treated human monocyte-derived macrophages with IFN-α and observed an increase in CASP1 and GSDMD mRNA levels over time, whereas IL1B and NLRP3 were not directly correlated to IFN-α exposure time. IFN-α treatment reduced the release of mature IL-1ß and IL-18, but not caspase-1, in response to ATP-mediated NLRP3 inflammasome activation, suggesting regulation occurs at cytokine expression levels and not the inflammasome itself. However, more studies are required to investigate how regulation by IFN-α occurs and impacts NLRP3 and other inflammasomes at both transcriptional and post-translational levels.


Asunto(s)
Interferón Tipo I , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Interferón Tipo I/metabolismo , Interleucina-18/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Caspasa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA