RESUMEN
BACKGROUND: Soft-milling wheat has potential use for both grain whisky distilling and bioethanol production. Varietal comparisons over wide-ranging environments would permit assessment of both grain and alcohol yield potential and also permit the stability across environments, for these parameters, to be compared. RESULTS: For 12 varieties, analysis of variance showed highly significant effects of variety, site, season and fertiliser application on grain and alcohol yield. There were also significant interactions between these factors and, consequently, varieties varied in stability across environments as well as in mean values for the parameters assessed. Alcohol production per hectare was affected more strongly by variation in grain yield than alcohol yield, but increasing grain protein content reduced alcohol yield and, therefore, utility for grain distilling. CONCLUSION: To maximise energy production, the best varieties for bioethanol would combine high and stable grain yield with slower reduction of alcohol yield as grain protein increases. For grain distilling, where the energy balance is less important, high alcohol yield will remain the key factor. Data derived using near infrared spectroscopy can be valuable in assessing stability of quality traits across environments.
Asunto(s)
Biocombustibles , Grano Comestible/crecimiento & desarrollo , Etanol/metabolismo , Triticum/crecimiento & desarrollo , Bebidas Alcohólicas , Destilación , Estabilidad de Medicamentos , Grano Comestible/metabolismo , Ambiente , Fertilizantes , Estaciones del Año , Triticum/metabolismoRESUMEN
BACKGROUND: Following the Renewable Transport Fuel Obligation (RTFO), there is an increasing demand for wheat grain for liquid biofuel in the UK. In order to enhance productivity of the bioethanol industry, good quality wheat must be used. RESULTS: A total of 84 grain samples comprising 14 varieties collected from 11 sites in two harvest years were analysed for a range of grain quality parameters and ethanol yield (EY). The grain quality parameters studied were starch and protein concentration, specific weight, grain density, packing efficiency, thousand-grain weight (TGW), grain length, width, length/width ratio and hardness index. Regression analysis was used to establish the relationships between grain quality parameters and EY. Apart from grain length and density, all grain parameters had significant relationships with EY. In the order of importance, protein concentration, TGW, packing efficiency and specific weight showed good relationships with EY. All other parameters, including starch concentration, showed a poor correlation with EY. EY and the relationship with the grain parameters were affected more by environment than by variety. Some sites gave consistently higher EY than others. When site and variety were considered with TGW and protein, a good prediction of EY could be made (variance accounted for = 87%). CONCLUSION: Combining TGW and protein concentration could be a better indicator of EY than the current practice of specific weight and protein.