Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 481(1): 33-44, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112318

RESUMEN

Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Humanos , Piruvaldehído/metabolismo , Proinsulina , Péptidos/química , Endopeptidasas
2.
Mol Ther ; 31(8): 2408-2421, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37408309

RESUMEN

Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias , Animales , Humanos , Tejido Adiposo/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Péptidos/farmacología , Preparaciones Farmacéuticas/metabolismo , Calidad de Vida
3.
Clin Chem Lab Med ; 61(3): 452-463, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36537103

RESUMEN

OBJECTIVES: Conventionally, reference intervals are established by direct methods, which require a well-characterized, obviously healthy study population. This elaborate approach is time consuming, costly and has rarely been applied to steroid hormones measured by mass spectrometry. In this feasibility study, we investigate whether indirect methods based on routine laboratory results can be used to verify reference intervals from external sources. METHODS: A total of 11,259 serum samples were used to quantify 13 steroid hormones by mass spectrometry. For indirect estimation of reference intervals, we applied a "modified Hoffmann approach", and verified the results with a more sophisticated statistical method (refineR). We compared our results with those of four recent studies using direct approaches. RESULTS: We evaluated a total of 81 sex- and age-specific reference intervals, for which at least 120 measurements were available. The overall agreement between indirectly and directly determined reference intervals was surprisingly good as nearly every fourth reference limit could be confirmed by narrow tolerance limits. Furthermore, lower reference limits could be provided for some low concentrated hormones by the indirect method. In cases of substantial deviations, our results matched the underlying data better than reference intervals from external studies. CONCLUSIONS: Our study shows for the first time that indirect methods are a valuable tool to verify existing reference intervals for steroid hormones. A simple "modified Hoffmann approach" based on the general assumption of a normal or lognormal distribution model is sufficient for screening purposes, while the refineR algorithm may be used for a more detailed analysis.


Asunto(s)
Esteroides , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Valores de Referencia , Hormonas , Factores de Edad
4.
Neurobiol Dis ; 127: 76-86, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30807826

RESUMEN

Painful diabetic neuropathy (PDN) is a devastating neurological complication of diabetes. Methylglyoxal (MG) is a reactive metabolite whose elevation in the plasma corresponds to PDN in patients and pain-like behavior in rodent models of type 1 and type 2 diabetes. Here, we addressed the MG-related spinal mechanisms of PDN in type 2 diabetes using db/db mice, an established model of type 2 diabetes, and intrathecal injection of MG in conventional C57BL/6J mice. Administration of either a MG scavenger (GERP10) or a vector overexpressing glyoxalase 1, the catabolic enzyme for MG, attenuated heat hypersensitivity in db/db mice. In C57BL/6J mice, intrathecal administration of MG produced signs of both evoked (heat and mechanical hypersensitivity) and affective (conditioned place avoidance) pain. MG-induced Ca2+ mobilization in lamina II dorsal horn neurons of C57BL/6J mice was exacerbated in db/db, suggestive of MG-evoked central sensitization. Pharmacological and/or genetic inhibition of transient receptor potential ankyrin subtype 1 (TRPA1), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), or exchange protein directly activated by cyclic adenosine monophosphate (Epac) blocked MG-evoked hypersensitivity in C57BL/6J mice. Similarly, intrathecal administration of GERP10, or inhibitors of TRPA1 (HC030031), AC1 (NB001), or Epac (HJC-0197) attenuated hypersensitivity in db/db mice. We conclude that MG and sensitization of a spinal TRPA1-AC1-Epac signaling cascade facilitate PDN in db/db mice. Our results warrant clinical investigation of MG scavengers, glyoxalase inducers, and spinally-directed pharmacological inhibitors of a MG-TRPA1-AC1-Epac pathway for the treatment of PDN in type 2 diabetes.


Asunto(s)
Adenilil Ciclasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropatías Diabéticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Piruvaldehído/metabolismo , Canal Catiónico TRPA1/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Ratones , Dimensión del Dolor , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Piruvaldehído/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
New Phytol ; 222(2): 1112-1122, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30444536

RESUMEN

Colour signals are the main floral trait for plant-pollinator communication. Owing to visual specificities, flower visitors exert different selective pressures on flower colour signals of plant communities. Although they evolved to attract pollinators, matching their visual sensitivity and colour preferences, floral signals may also evolve to avoid less efficient pollinators and antagonistic flower visitors. We evaluated evidence for the bee avoidance hypothesis in a Neotropical community pollinated mainly by bees and hummingbirds, the campo rupestre. We analysed flower reflectance spectra, compared colour variables of bee-pollinated flowers (bee-flowers; 244 species) and hummingbird-pollinated flowers (hummingbird-flowers; 39 species), and looked for evidence of bee sensorial exclusion in hummingbird-flowers. Flowers were equally contrasting for hummingbirds. Hummingbird-flowers were less conspicuous to bees, reflecting mainly long wavelengths and avoiding red-blind visitors. Bee-flowers reflected more short wavelengths, were more conspicuous to bees (higher contrasts and spectral purity) than hummingbird-flowers and displayed floral guides more frequently, favouring flower attractiveness, discrimination and handling by bees. Along with no phylogenetic signal, the differences in colour signal strategies between bee- and hummingbird-flowers are the first evidence of the bee avoidance hypothesis at a community level and reinforce the role of pollinators as a selective pressure driving flower colour diversity.


Asunto(s)
Reacción de Prevención , Abejas/fisiología , Aves/fisiología , Flores/fisiología , Modelos Biológicos , Pigmentación/fisiología , Animales , Color , Polinización/fisiología , Especificidad de la Especie
6.
J Exp Biol ; 221(Pt 22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30190319

RESUMEN

Droneflies, imagoes of the hoverfly Eristalis tenax, are known to possess a preference for yellow flowers, i.e. they prefer to visit yellow flowers and prefer to extend the proboscis to yellow colours. In this study we disentangle these colour preferences by investigating the landing reaction and proboscis reflex with particular reference to intensity, spectral purity and dominant wavelength of colour stimuli and their UV reflection properties. In multiple-choice tests, naïve and non-trained flies prefer to land on yellow colours independent of their UV reflection characteristics, but also accept blue, white and pink colours if they absorb UV and are of sufficient brightness. Flies trained to land on colours other than yellow still prefer yellow colours to some extent. Moreover, the flies prefer bright over dark yellow colours even if trained to dark yellow ones. The flies refuse to land on dark colours of all hues. Naïve flies exhibit the proboscis reflex only to pure yellow pollen. These experiments show for the first time that landing in droneflies is triggered by a yellow colour independent of its UV reflection properties, but proboscis extension is triggered by yellow colours strongly absorbing blue and UV. The ability to discriminate colours is better than predicted by the categorical colour vision model. The colour preferences in E. tenax represent a fine-tuned ability to visit yellow flowers displaying a UV bull's-eye pattern.


Asunto(s)
Color , Dípteros/fisiología , Conducta Alimentaria , Flores , Animales , Visión de Colores , Aprendizaje/fisiología , Polen , Reflejo , Rayos Ultravioleta
7.
Anal Bioanal Chem ; 410(2): 521-528, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143878

RESUMEN

The determination of individual prostaglandins (PG) in humans is mainly performed in urine samples. The quantification of PGs in human plasma could improve the understanding of particular PG species under various physiological and pathological conditions. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a dehydrated downstream product of PGD2 and is of high interest due to its recently discovered anti-inflammatory effects. Increasing availability of highly sensitive mass spectrometry allows the quantification of low abundant biomarkers like 15d-PGJ2 in human plasma samples. Herein, a sensitive LC-MS/MS method for the determination of 15d-PGJ2 was established. The method was validated according to the guidance of the American Food and Drug Administration and tested in plasma samples from patients with poorly controlled diabetes, considered to be a pro-inflammatory condition. Extraction of 15d-PGJ2 was achieved with an easy-to-use liquid-liquid extraction by ethyl acetate following a methanol precipitation. The lower limit of quantification was 2.5 pg mL-1 and linearity (R 2 = 0.998) was guaranteed between 2.5 and 500 pg mL-1 for 15d-PGJ2. Selectivity was assured by the use of two individual mass transitions (qualifier and quantifier). Precision and accuracy were validated in an inter- and intraday assay with a coefficient of variation below 11.8% (intraday) and 14.7% (interday). In diabetic patients with an HbA1C > 9%, increased plasma concentrations of 15d-PGJ2 compared to control plasma were measured. 15d-PGJ2 correlated negatively with the inflammation marker C-reactive protein. The developed LC-MS/MS method represents a new possibility to quantify 15d-PGJ2 with high specificity in human plasma samples. This may contribute to a better understanding of the potential anti-inflammatory effects of 15d-PGJ2 in severe long-term pro-inflammatory disorders like diabetes, cancer, or cardiovascular disease.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Prostaglandina D2/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Adulto , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Inflamación/sangre , Límite de Detección , Masculino , Persona de Mediana Edad , Prostaglandina D2/sangre
8.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 654-662, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27932057

RESUMEN

The reactive metabolite methylglyoxal (MG) has been identified as mediator of pain. Scavenging of free MG and the prevention of MG-derived post-translational modifications may provide a useful therapeutic treatment. An arginine-rich, fatty acid coupled, cyclic peptide (CycK(Myr)R4E) with high proteolytic stability and prolonged circulation was developed for the scavenging of MG. It was shown to reduce the formation of albumin-MG adducts in vitro and prevented MG-induced pain by reducing plasma MG levels through the formation of peptide-MG adducts in vivo. CycK(Myr)R4E therefore presents a promising option for the treatment of pain and other diabetic complications associated with high MG levels.


Asunto(s)
Analgésicos/uso terapéutico , Dolor/prevención & control , Péptidos Cíclicos/uso terapéutico , Piruvaldehído/metabolismo , Secuencia de Aminoácidos , Analgésicos/sangre , Analgésicos/química , Analgésicos/farmacocinética , Animales , Ratones , Ratones Endogámicos C57BL , Dolor/sangre , Dolor/metabolismo , Péptidos Cíclicos/sangre , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Piruvaldehído/sangre , Albúmina Sérica/metabolismo
9.
Int J Mol Sci ; 18(5)2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28475116

RESUMEN

Advanced glycation end-products (AGEs) are non-enzymatic protein and amino acid adducts as well as DNA adducts which form from dicarbonyls and glucose. AGE formation is enhanced in diabetes and is associated with the development of diabetic complications. In the current review, we discuss mechanisms that lead to enhanced AGE levels in the context of diabetes and diabetic complications. The methylglyoxal-detoxifying glyoxalase system as well as alternative pathways of AGE detoxification are summarized. Therapeutic approaches to interfere with different pathways of AGE formation are presented.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hipoglucemiantes/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Complicaciones de la Diabetes/tratamiento farmacológico , Glioxal/metabolismo , Humanos , Hipoglucemiantes/farmacología , Reacción de Maillard/efectos de los fármacos
10.
Biochim Biophys Acta ; 1852(8): 1610-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25900786

RESUMEN

Advanced glycation end-products (AGEs) comprise a group of non-enzymatic post-translational modifications of proteins and are elevated in diabetic tissues. AGE-modification impairs the digestibility of collagen in vitro but little is known about its relation to collagen-degrading proteinases in vivo. N(ε)-carboxymethyllysine (CML) is a stable AGE that forms on lysyl side-chains in the presence of glucose, probably via a transition metal-catalysed mechanism. Here, rats with streptozotocin-induced diabetes and non-diabetic controls were treated for 8weeks with placebo or the Cu(II)-selective chelator, triethylenetetramine (TETA), commencing 8weeks after disease induction. Actions of diabetes and drug treatment were measured on collagen and collagen-degrading proteinases in kidney tissue. The digestibility and CML content of collagen, and corresponding levels of mRNAs and collagen, were related to changes in collagen-degrading-proteinases. Collagen-degrading proteinases, cathepsin L (CTSL) and matrix metalloproteinase-2 (MMP-2) were increased in diabetic rats. CTSL-levels correlated strongly and positively with increased collagen-CML levels and inversely with decreased collagen digestibility in diabetes. The collagen-rich mesangium displayed a strong increase of CTSL in diabetes. TETA treatment normalised kidney collagen content and partially normalised levels of CML and CTSL. These data provide evidence for an adaptive proteinase response in diabetic kidneys, affected by excessive collagen-CML formation and decreased collagen digestibility. The normalisation of collagen and partial normalisation of CML- and CTSL-levels by TETA treatment supports the involvement of Cu(II) in CML formation and altered collagen metabolism in diabetic kidneys. Cu(II)-chelation by TETA may represent a treatment option to rectify collagen metabolism in diabetes independent of alterations in blood glucose levels.


Asunto(s)
Quelantes/metabolismo , Colágeno/metabolismo , Cobre/metabolismo , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Lisina/análogos & derivados , Péptido Hidrolasas/metabolismo , Animales , Quelantes/farmacología , Diabetes Mellitus Experimental/patología , Riñón/efectos de los fármacos , Riñón/patología , Lisina/metabolismo , Masculino , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Wistar , Estreptozocina , Trientina/farmacología
11.
Bioconjug Chem ; 27(4): 1050-7, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26999755

RESUMEN

Kidney-specific drug targeting is an attractive strategy to reduce unwanted side effects and to enhance drug efficacy within the renal tissue. For this purpose a novel kidney-specific drug carrier was developed. The peptide sequence (KKEEE)3K triggers exceptional renal specificity at high accumulation rates. Micro-PET imaging studies of megalin-deficient mice indicate that the cellular endocytosis of this carrier is mediated by megalin. This assumption is supported by immunohistochemical analysis of FITC-labeled carrier peptide, which exclusively accumulated at the apical side of proximal tubule cells within the renal cortex. Scintigraphic studies of modified ciprofloxacin conjugated to (KKEEE)3K confirmed the excellent drug targeting potential of the peptide carrier. The conjugate accumulated entirely in the kidneys, revealing flawless redirection of ciprofloxacin, a compound that is mainly excreted by the liver. In conclusion, these results suggest the potential of (KKEEE)3K as a promising candidate for kidney-targeted drug delivery to proximal tubule cells.


Asunto(s)
Túbulos Renales Proximales/efectos de los fármacos , Péptidos/administración & dosificación , Anciano , Animales , Humanos , Ratones , Tomografía de Emisión de Positrones
12.
J Diabetes Complications ; 34(9): 107648, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32532588

RESUMEN

AIMS: Cathepsin D (CTSD) and L (CTSL) are lysosomal proteases which degrade and detoxify advanced glycation end product (AGE)-modified proteins which are predictive of the development of diabetic nephropathy. We aimed to quantify cathepsin levels in urine from patients with type 2 diabetes and to relate these to the amount of urinary free AGEs at baseline and with kidney function after four years of follow-up in this closed cohort study. METHODS: We established and validated a LC MS/MS method for the quantification of CTSD and CTSL in urine. Patients with type 2 diabetes were screened for diabetic kidney disease and 141 patients were seen at baseline and after four years. CTSD and CTSL and free AGEs were quantified in urine by LC MS/MS at baseline in these patients. RESULTS: The detection limit of CTSD and CTSL in urine was 2.4 ng/l and 19.1 ng/l, respectively. CTSD (p < 0.0001, r = 0.555) and CTSL (p < 0.0001, r = 0.608) correlated positively with albuminuria at time of recruitment. In addition levels of the proteases but not albuminuria correlated with urinary levels of the major cross-linking AGE glucosepane (CTSD: p = 0.012, r = 0.225; CTSL: p < 0.001, r = 0.376). A strong non-linear association between CTSD (r = 0.568), CTSL (r = 0.588) and change in albuminuria over four years was present. High levels of CTSL (p = 0.007, beta = -0.366) were associated with an improvement of albuminuria after four years. CONCLUSIONS: A sensitive LC MS/MS assay for the quantification of CTSD and CTSL in urine was established. High CTSL baseline levels were associated with an improvement in albuminuria at follow-up. An increased excretion and thus detoxification of the free form of the pathogenic cross-linking AGE glucosepane could explain the positive predictive value of high CTSL levels on albuminuria.


Asunto(s)
Albuminuria , Catepsina L/orina , Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Albuminuria/diagnóstico , Albuminuria/etiología , Catepsina D/orina , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Productos Finales de Glicación Avanzada/orina , Humanos , Espectrometría de Masas en Tándem
13.
Reprod Toxicol ; 62: 62-70, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27109771

RESUMEN

The receptor for Advanced Glycation End products (RAGE) is implicated in the pathogenesis of diabetic complications, but its importance in diabetic embryopathy is unclear. We therefore investigated the role of RAGE in diabetic embryopathy using streptozotocin induced diabetes in female wild type (WT) C57Bl/6N and RAGE knockout C57Bl/6N (RAGE(-/-)) mice, mated with control males of the same genotype. Maternal diabetes induced more fetal resorption and malformation (facial skeleton, neural tube) in the WT than in the RAGE(-/-) fetuses. Maternal plasma glucose and methylgyoxal concentrations, as well as embryonic N(ε)-carboxymethyl-lysine (CML) levels were increased to the same extent in diabetic WT and RAGE(-/-) pregnancy. However, maternal diabetes induced increased fetal hepatic isoprostane 8-iso-PGF2α levels (oxidative stress marker) and embryonic activation of NFκB in WT only (not in RAGE(-/-) embryos). The association between RAGE knockout and diminished embryonic dysmorphogenesis in diabetic pregnancy suggests that embryonic RAGE activation is involved in diabetic embryopathy.


Asunto(s)
Diabetes Mellitus Experimental , Desarrollo Fetal , Embarazo en Diabéticas , Receptor para Productos Finales de Glicación Avanzada/genética , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Reabsorción del Feto , Expresión Génica , Hígado/embriología , Hígado/metabolismo , Lisina/análogos & derivados , Lisina/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , Embarazo , Embarazo en Diabéticas/sangre , Embarazo en Diabéticas/genética , Piruvaldehído/sangre
14.
J Cell Sci ; 121(Pt 7): 1046-53, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18334557

RESUMEN

Telomerase is a ribonucleoprotein that counteracts telomere shortening and can immortalise human cells. There is also evidence for a telomere-independent survival function of telomerase. However, its mechanism is not understood. We show here that TERT, the catalytic subunit of human telomerase, protects human fibroblasts against oxidative stress. While TERT maintains telomere length under standard conditions, telomeres under increased stress shorten as fast as in cells without active telomerase. This is because TERT is reversibly excluded from the nucleus under stress in a dose- and time-dependent manner. Extranuclear telomerase colocalises with mitochondria. In TERT-overexpressing cells, mtDNA is protected, mitochondrial membrane potential is increased and mitochondrial superoxide production and cell peroxide levels are decreased, all indicating improved mitochondrial function and diminished retrograde response. We propose protection of mitochondria under mild stress as a novel function of TERT.


Asunto(s)
Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Telomerasa/metabolismo , Telómero/metabolismo , Células Cultivadas , ADN Mitocondrial/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA