Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Dairy Sci ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762110

RESUMEN

Flaxseed is the richest source of secoisolariciresinol diglucoside, which is converted by ruminal microorganisms primarily to the mammalian lignan enterolactone. Our objective was to investigate the effect of diets containing soybean meal or flaxseed meal (FM) supplemented with sucrose, flaxseed oil, or both on milk enterolactone concentration and yield, diversity and relative abundance of ruminal bacterial taxa, ruminal fermentation profile, production performance, milk fatty acid (FA) yield, and nutrient utilization in dairy cows. Sixteen Holstein cows [8 multiparous (4 ruminally-cannulated) and 8 primiparous] averaging (mean ± SD) 134 ± 54.1 DIM and 679 ± 78.9 kg of BW in the beginning of the study were assigned to treatment sequences in a replicated 4 × 4 Latin square design. Each experimental period lasted 25 d with 18 d for diet adaptation and 7 d for data and sample collection. Diets were formulated to contain a 60:40 forage:concentrate ratio and included (DM basis): 1) 8% soybean meal and 23% ground corn (SBM), 2) 15% FM, 10.7% ground corn, and 5% sucrose (FLX+S), 3) 15% FM, 15.4% ground corn, and 3% flaxseed oil (FLX+O), and 4) 15% FM, 10.2% ground corn, 5% sucrose, and 3% flaxseed oil (FLX+SO). Compared with SBM, the concentration and yield of milk enterolactone increased in cows fed the FM diets, but did not differ among FLX+S, FLX+O, and FLX+SO. The relative abundances of the phyla Firmicutes, Verrucomicrobiota, and Actinobacteriota and those of the bacterial genera Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Anaeromusa-Anaeroarcus, WCHB1-41, and p-251-o5 decreased, whereas Prevotella and NK4A214 group increased when comparing SBM against at least 1 diet containing FM. Furthermore, the relative abundances of Firmicutes and Actinobacteriota and those of Prevotella, Lachnospiraceae NK3A20 group, Eubacterium coprostanoligenes group, Acetitomaculum, Lachnospiraceae unclassified, NK4A214 group, and Anaeromusa-Anaeroarcus changed (increased or decreased) across the FLX+S, FLX+O, and FLX+SO diets. However, all these changes in the relative abundance of the ruminal bacterial taxa were not conclusively associated with the effect of diets on milk enterolactone. Diets did not affect ruminal pH and concentrations of NH3-N and total VFA. Dry matter intake and yields of milk, milk fat, and milk true protein all decreased in cows fed FLX+O or FLX+SO. Yields of milk total odd-chain FA, branched-chain FA, total < 16C FA, and total 16C FA all decreased with feeding FLX+O and FLX+SO. The apparent total-tract digestibilities of DM and OM were lowest in the FLX+S and FLX+O diets, with CP and ADF digestibilities lowest in cows receiving FLX+S or FLX+O, respectively. Urinary excretion of total N was lowest with feeding SBM. Contrarily, diets did not affect the urinary excretion of total purine derivatives. In brief, despite the effect of diets on the relative abundance of several ruminal microbiota phyla and genera, we were unable to conclusively associate these changes with increased milk enterolactone in FM-containing diets versus SBM.

2.
J Dairy Sci ; 107(4): 2066-2086, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37863298

RESUMEN

Our goal was to investigate the effect of diets containing baleages harvested from alfalfa-grass or red clover-grass mixture on production performance, ruminal fermentation and microbiota taxa relative abundance, milk fatty acid profile, and nutrient utilization in dairy cows. Twenty Jersey cows (18 multiparous and 2 primiparous) averaging (mean ± SD) 148 ± 45.2 days in milk and 483 ± 65.4 kg of body weight in the beginning of the study were used in a randomized complete block design with repeated measures over time. The experiment lasted 9 wk, with a 2 wk covariate period followed by 7 wk of data and sample collection (wk 4 and 7 used in the statistical analyses). Cows were fed diets containing (dry matter basis) 35% of a concentrate mash and the following forage sources: (1) 65% second- and third-cut (32.5% each) alfalfa-grass mixture baleages (ALF) or (2) 65% second- and third-cut (32.5% each) red clover-grass mixture baleages (RC). Diets did not affect dry matter intake, milk yield, and concentrations of milk fat and true protein. In contrast, milk fat yield tended to decrease and energy-corrected milk yield decreased with feeding RC versus ALF. The apparent total-tract digestibilities of dry matter, organic matter, and ash-free neutral detergent fiber, milk proportions of trans-10 18:1, cis-9,cis-12,cis-15 18:3, and total n-3 fatty acids, ruminal molar proportion of acetate, and plasma concentrations of Leu, Phe, and Val all increased in RC versus ALF. Diet × week interactions were found for several parameters, most notably ruminal molar proportions of propionate and butyrate, ruminal NH3-N, milk urea N, plasma urea N, and plasma His concentrations, urinary N excretion, enteric CH4 production, and all energy efficiency variables. Specifically, ruminal NH3-N and plasma urea N concentrations, urinary excretion of N, and CH4 production decreased in cows fed RC in wk 4 but not in wk 7. Milk urea N concentration decreased and that of plasma His increased with feeding RC during wk 4 and 7, although the magnitude of treatments difference varied between the sampling periods. Efficiency of energy utilization calculated as milk energy/metabolizable energy decreased and that of tissue energy/ME increased in RC versus ALF cows in wk 4, suggesting that ME was portioned toward tissue and not milk in the RC diet. Interactions were also observed for the relative abundance of the rumen bacterial phyla Verrucomicrobiota and Fibrobacterota, with cows offered RC showing greater values than those receiving ALF in wk 4 but no differences in wk 7. Several diet × week interactions were detected in the present study implying short-term treatment responses and warranting further investigations.


Asunto(s)
Leche , Trifolium , Femenino , Bovinos , Animales , Leche/metabolismo , Poaceae/metabolismo , Medicago sativa/metabolismo , Trifolium/metabolismo , Lactancia/fisiología , Fermentación , Dieta/veterinaria , Ácidos Grasos/metabolismo , Nutrientes , Urea/metabolismo , Rumen/metabolismo , Digestión , Zea mays/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38223952

RESUMEN

Summary: Background. Asthma control can be influenced by several factors, including obstructive sleep apnea (OSA). The literature reports variable prevalence and magnitude of OSA impact on asthma outcomes. The aim of our study is to analyze the frequency of high-risk for OSA in asthma patients and its impact on disease severity and control. Methods. We conducted a cross-sectional study at an Allergy Department with adult asthma patients recruited while undergoing routine lung function tests. Data on sex, age, body mass index, allergen sensitization, smoking habits, risk of OSA (using the Berlin questionnaire), rhinitis control (through CARAT), asthma severity (based on GINA 2023), asthma control (using the ACT), adherence to asthma treatment (through Treatment Adherence Measure) and pulmonary function test results were collected. Results. We included 216 patients, predominantly women (70.4%), with a median (P25-P75) age of 29.0 (21.0-45.0) years, of whom 28.2% were on GINA treatment levels 4-5. In 75.5% of cases asthma was controlled. High-risk for OSA was identified in 21.8% of patients. Asthma patients with high-risk for OSA were more likely to have uncontrolled [(47.8%; n = 22) vs (15.8%; n = 26); p less than 0.001] and more severe disease [(44.7%; n = 21) vs (23.7%; n = 40), p = 0.006]. In multivariable analysis, high-risk for OSA (OR 2.81 [95%CI 1.1.28-6.17], p = 0.010), sex (women) (OR 5.21 [95% CI 1.70-15.96], p = 0.004), uncontrolled rhinitis (OR 3.65 [95%CI 1.38-9.64], p = 0.009) and GINA asthma treatment steps 4-5 (OR 2.46 [95%CI 1.15-5.26], p = 0.020) were associated with uncontrolled asthma. Conclusions. It is crucial to actively investigate OSA, especially in patients with uncontrolled and more severe forms of asthma.

4.
J Dairy Sci ; 106(9): 6080-6093, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479577

RESUMEN

Increased diet fermentability may decrease ruminal pH and fiber digestibility, and increase the flow of trans fatty acids (FA) to the lower tract ultimately leading to milk fat depression. We recently showed that feeding super-conditioned corn, a new method of corn processing (95°C for 6 min in super-conditioner) for ruminants has potential to the reduction in milk fat yield caused by changes in ruminal pH and increased trans FA in milk fat. Supplementing yeast culture (YC) and replacing starch with sugar sources in diet can counteract the negative effects of high fermentable diets by improving ruminal pH and milk fat output. This study aimed to evaluate the effect of feeding beet liquid molasses (LM) and YC on intake and total-tract digestibility of nutrients, milk yield and composition, ruminal fermentation, milk FA profile, and plasma concentrations of glucose, nonesterified FA, ß-hydroxybutyric acid, and urea N in early-lactation dairy cows fed high-starch diets containing super-conditioned corn. Twelve primiparous and 18 multiparous Holstein cows (mean ± SD; 67 ± 12 d in milk and 42 ± 2.1 kg of milk at the beginning of the experiment) were blocked by parity, pre-experimental milk yield, and DIM. Cows were used in a randomized complete block design experiment with 14 d as covariate period and 37 d for the experimental period. The following dietary treatments were fed as total mixed rations: (1) control diet (CTRL = no YC or LM supplementation), (2) LM supplementation at 5% of the diet dry matter (MOL diet), and (3) CTRL supplemented with 10 g/d of YC (YST diet). Diets were formulated to be isonitrogenous and isoenergetic. Intake of nutrients and apparent total-tract digestibility of crude protein and starch did not change across treatments. In contrast, cows fed the YST diet had the greatest apparent total-tract digestibility of dry matter, organic matter and neutral detergent fiber. Compared with the CTRL diet, yield of 4% FCM increased by 2.4 and 1.8 kg in cows fed MOL or YST, respectively. The ruminal molar proportions of acetate and butyrate increased in cows fed the YST or MOL diets, respectively, but the proportion of ruminal propionate was not affected by treatments. Milk fat concentration increased by supplementing both LM and YC and the milk yield of total trans-18:1 dropped by 45% and 18% relative to CTRL with MOL or YST diets, respectively. While the MOL diet increased the milk proportion and yield of de novo FA, no treatment effects were observed for the proportion and yield of preformed FA in the milk fat. Apart from ß-hydroxybutyric acid concentration in plasma, which was greatest in cows fed MOL, remaining blood metabolites were not affected by treatments. Overall, MOL and YST diets increased 4% FCM and milk fat concentration and reduced the proportion of total trans-18:1 FA in milk fat in cows fed a concentrate based on super-conditioned corn. These responses were associated with increased ruminal pH and the molar proportions of acetate and butyrate with feeding the MOL and YST diets.


Asunto(s)
Saccharomyces cerevisiae , Zea mays , Femenino , Embarazo , Bovinos , Animales , Leche , Ácido 3-Hidroxibutírico , Melaza , Nutrientes , Butiratos , Lactancia
5.
J Dairy Sci ; 106(6): 4002-4017, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105871

RESUMEN

We previously observed that diets with reduced starch concentration decreased yields of milk and milk protein in dairy cows fed low metabolizable protein diets. Supplementation of reduced-starch diets with a lipid source may attenuate or eliminate production losses. Our objective was to investigate the effects of partially replacing ground corn with soyhulls plus a palmitic acid-enriched supplement on dry matter (DM) intake, milk yield and composition, plasma AA concentration, and N and energy utilization in cows fed low metabolizable protein diets (mean = -68 g/d balance) with or without rumen-protected Met, Lys, and His (RP-MLH). Sixteen multiparous Holstein cows averaging (mean ± standard deviation) 112 ± 28 d in milk, 724 ± 44 kg of body weight, and 46 ± 5 kg/d of milk in the beginning of the study were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d, consisting of 14 d for diet adaptation and 7 d for data and sample collection. Diets were fed as follows: (1) high starch (HS), (2) HS plus RP-MLH (HS+AA), (3) reduced starch plus a palmitic acid-enriched supplement (RSPA), and (4) RSPA plus RP-MLH (RSPA+AA). The HS diet contained (DM basis) 26% ground corn and 7% soyhulls, and the RSPA diet had 10% ground corn, 22% soyhulls, and 1.5% palmitic acid. The HS diet averaged (DM basis) 32.6% starch and 4% ether extract, while starch and ether extract concentrations of the RSPA diet were 21.7 and 5.9%, respectively. All 4 diets had (DM basis) 40% corn silage, 5% mixed-mostly grass haylage, 5% grass hay, and 50% concentrate. Diets did not affect DM intake and milk yield. Contrarily, feeding RSPA and RSPA+AA increased yields of energy-corrected milk (47.0 vs. 44.8 kg/d) and milk fat (1.65 vs. 1.50 kg/d) compared with HS and HS+AA. Milk fat concentration tended to decrease when RP-MLH was supplemented to HS, but no change was seen when added to RS (starch level × RP-MLH interaction). Milk and plasma urea N increased, and milk N efficiency decreased in cows fed RSPA and RSPA+AA versus HS and HS+AA. Apparent total-tract digestibilites of crude protein and neutral detergent fiber, as well as urinary urea N and total N excretion, were greater in cows offered RSPA and RSPA+AA than HS and HS+AA. Plasma Met and His concentrations increased with supplemental RP-MLH. Intake of gross energy and digestible energy and the output of urinary and milk energy were all greater with feeding RSPA and RSPA+AA versus HS and HS+AA. In summary, partially replacing ground corn with soyhulls plus palmitic acid in diets supplemented or not with RP-MLH increased milk fat yield and fiber digestibility and maintained DM intake and milk yield, but with decreased milk N efficiency and elevated urinary N excretion.


Asunto(s)
Alimentación Animal , Dieta Rica en Proteínas , Glycine max , Ácido Palmítico , Zea mays , Dieta Rica en Proteínas/veterinaria , Aminoácidos , Rumen , Animales , Bovinos , Almidón , Suplementos Dietéticos , Nutrientes
6.
J Dairy Sci ; 105(5): 4083-4098, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35221070

RESUMEN

Previous research has shown that the brown seaweed Ascophyllum nodosum (ASCO) has antimicrobial and antioxidant properties and also increases milk I concentration. We aimed to investigate the effects of supplementing ASCO meal or monensin (MON) on ruminal fermentation, diversity and relative abundance of ruminal bacterial taxa, metabolism of I and As, and blood concentrations of thyroid hormones, antioxidant enzymes, and cortisol in lactating dairy cows. Five multiparous ruminally cannulated Jersey cows averaging (mean ± standard deviation) 102 ± 15 d in milk and 450 ± 33 kg of body weight at the beginning of the study were used in a Latin square design with 28-d periods (21 d for diet adaptation and 7 d for data and sample collection). Cows were fed ad libitum a basal diet containing (dry matter basis) 65% forage as haylage and corn silage and 35% concentrate and were randomly assigned to 1 of the following 5 dietary treatments: 0, 57, 113, or 170 g/d of ASCO meal, or 300 mg/d of MON. Supplements were placed directly into the rumen once daily after the morning feeding. Diets had no effect on ruminal pH and NH3-N concentration, which averaged 6.02 and 6.86 mg/dL, respectively. Total volatile fatty acid concentration decreased linearly in cows fed incremental amounts of ASCO meal. Supplementation with ASCO meal did not change the ruminal molar proportions of volatile fatty acids apart from butyrate, which responded quadratically with the lowest values observed at 56 and 113 g/d of ASCO supplementation. Compared with the control diet or diets containing ASCO meal, cows fed MON showed greater molar proportion of propionate. Diets did not affect the α diversity indices Shannon, Simpson, and Fisher for ruminal bacteria. However, feeding incremental levels of ASCO meal linearly decreased the relative abundance of Tenericutes in ruminal fluid. Monensin increased the relative abundance of the CAG:352 bacterial genus in ruminal fluid compared with the control diet. Linear increases in response to ASCO meal supplementation were observed for the concentrations and output of I in serum, milk, urine, and feces. Fecal excretion of As increased linearly in cows fed varying amounts of ASCO meal, but ASCO did not affect the concentration and secretion of As in milk. The plasma activities of the antioxidant enzymes and the serum concentrations of thyroid hormones did not change. In contrast, circulating cortisol decreased linearly in diets containing ASCO meal. The apparent total-tract digestibilities of dry matter, organic matter, and crude protein increased linearly with ASCO meal, but those of neutral and acid detergent fiber were not affected. In summary, feeding incremental amounts of ASCO meal decreased serum cortisol concentration, and increased I concentrations and output in serum, milk, feces, and urine.


Asunto(s)
Arsénico , Ascophyllum , Yodo , Animales , Antioxidantes/metabolismo , Arsénico/metabolismo , Arsénico/farmacología , Ascophyllum/metabolismo , Bacterias/metabolismo , Bovinos , Suplementos Dietéticos , Digestión , Ácidos Grasos Volátiles/metabolismo , Femenino , Hidrocortisona/metabolismo , Yodo/metabolismo , Lactancia , Monensina/metabolismo , Monensina/farmacología , Rumen/metabolismo
7.
J Dairy Sci ; 104(3): 3109-3122, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33358820

RESUMEN

Okara meal is a byproduct from the production of soymilk and tofu and can potentially replace soybean meal (SBM) in dairy diets due to its high crude protein (CP) concentration and residual fat. The objective of this study was to investigate the effects of replacing SBM with okara meal on feed intake, yields of milk and milk components, milk fatty acid (FA) profile, nutrient utilization, and plasma AA concentration in lactating dairy cows. Twelve multiparous (65 ± 33 d in milk) and 8 primiparous (100 ± 35 d in milk) organically certified Jersey cows were paired by parity or days in milk, and within pair, randomly assigned to treatments in a crossover design with 21-d periods (14 d for diet adaptation and 7 d for data and sample collection). Diets were fed as total mixed ration formulated to be isonitrogenous and isofibrous and contained (dry matter basis) 50% mixed, mostly grass baleage, 2% sugarcane liquid molasses, 2% minerals-vitamins premix, and either (1) 8.1% SBM, 10% soyhulls, and 27.9% ground corn (CTRL); or (2) 15% okara meal, 8% soyhulls, and 23% ground corn (OKR). Dietary CP, ash-free neutral detergent fiber, and total FA averaged 15.4, 35.3, and 3.08% for CTRL and 15.9%, 36.3%, and 3.74% for OKR, respectively. Substitution of SBM with okara meal did not alter dry matter intake but increased intakes of CP and ash-free neutral detergent fiber. Additionally, no significant differences between treatments were observed for yields of milk and milk components, and concentrations of milk fat, lactose, and total solids. However, milk true protein concentration was lower in cows fed OKR (3.76%) versus CTRL (3.81%). Both milk urea N (8.51 vs. 9.47 mg/dL) and plasma urea N (16.9 vs. 17.8 mg/dL) concentrations decreased with OKR relative to the CTRL diet, respectively. Compared with CTRL, feeding OKR lowered the milk proportions of total odd-chain FA, de novo FA, and mixed FA and increased those of preformed FA, total n-6 FA, and total n-3 FA. The milk proportions of trans-10 18:1, trans-11 18:1, and cis-9,trans-11 18:2 were greater with feeding OKR versus the CTRL diet. The apparent total-tract digestibility of nutrients, urinary excretion of total purine derivatives (uric acid plus allantoin), and total N were not affected by treatments. Except for plasma Leu, which was lower in OKR compared with the CTRL diet, no other significant changes in the plasma concentrations of AA were observed. The plasma concentration of carnosine was lowest in cows receiving the OKR diet. Overall, our results revealed that okara meal can completely replace SBM without negatively affecting production and nutrient digestibility in early- to mid-lactation Jersey cows. Further research is needed to assess the economic feasibility of including okara meal in dairy diets, as well as the amount of okara meal that maximizes yields of milk and milk components in dairy cows in different stages of lactation.


Asunto(s)
Lactancia , Leche , Aminoácidos , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Digestión , Ácidos Grasos , Femenino , Nutrientes , Plasma , Embarazo , Rumen , Glycine max , Zea mays
8.
J Dairy Sci ; 104(9): 9784-9800, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34147220

RESUMEN

Our objective was to investigate the interactions between starch level and rumen-protected Met, Lys, His (RP-MLH) on milk yield, plasma AA concentration, and nutrient utilization in dairy cows fed low metabolizable protein diets (mean = -119 g/d of metabolizable protein balance). Sixteen multiparous Holstein cows (138 ± 46 d in milk, 46 ± 6 kg/d in milk) were used in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Dietary starch level varied by replacing (dry matter basis) pelleted beet pulp and soyhulls with ground corn resulting in the following treatments: (1) 20% pelleted beet pulp and 10% soyhulls (reduced starch = RS), (2) RS plus RP-MLH (RS+AA), (3) 30% ground corn (high starch = HS), and (4) HS plus RP-MLH (HS+AA). Dietary starch concentrations averaged 12.3 and 34.4% for RS and HS basal diets, respectively. Diets were supplemented with RP-MLH products to supply digestible Met, Lys, and His. Compared with RS and RS+AA diets, HS and HS+AA diets increased yields of milk (37.9 vs. 40.1 kg/d) and milk protein (1.07 vs. 1.16 kg/d) and decreased dry matter intake (25.9 vs. 25.2 kg/d), milk urea N (12.6 vs. 11.0 mg/dL), and plasma urea N (13.3 vs. 11.6 mg/dL). Milk N efficiency was greater in cows fed the HS and HS+AA than RS and RS+AA diets (28.9 vs. 25%), and RP-MLH supplementation improved milk true protein concentration. Starch level × RP-MLH interactions were observed for plasma concentrations of Arg and Lys, with RP-MLH being more effective to increase plasma Arg (+16%) and Lys (+23%) when supplemented to the RS than the HS basal diet. Replacing pelleted beet pulp and soyhulls with ground corn lowered the plasma concentrations of all essential AA except Met and Thr. In addition, the plasma concentrations of His and Met increased with RP-MLH. The apparent total-tract digestibilities of neutral and acid detergent fiber were lower, and those of starch and ether extract greater in cows offered the HS and HS+AA diets than RS and RS+AA diets. Urinary excretion of urea N decreased by replacing pelleted beet pulp and soyhulls with ground corn. Enteric CH4 production, CH4 yield, and CH4 intensity all decreased in the HS and HS+AA versus RS and RS+AA diets. Diets did not affect the intakes of gross energy, metabolizable energy, and net energy of lactation. In contrast, digestible energy intake increased with feeding the RS and RS+AA diets, whereas CH4 energy decreased in cows fed the HS and HS+AA diets. Supplementation with RP-MLH had no effect on energy utilization variables. Overall, the lack of interactions between dietary starch level and RP-MLH supplementation on most variables measured herein showed that the effects of starch intake and RP-MLH were independent or additive.


Asunto(s)
Metionina , Rumen , Animales , Bovinos , Dieta/veterinaria , Dieta con Restricción de Proteínas/veterinaria , Femenino , Histidina , Lactancia , Lisina , Nitrógeno , Almidón , Zea mays
9.
J Dairy Sci ; 104(12): 12459-12471, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34593224

RESUMEN

Shifting the cutting of grass from morning to afternoon has been shown to increase the concentration of nonstructural carbohydrates (NSC) in forages. We compared the effects of diets (66:34, forage:concentrate ratio) containing a mix (% of the diet dry matter) of baleages (46.5%) and silages (19.3%) harvested from timothy cut in the afternoon (p.m.-cut TIM diet) or morning (a.m.-cut TIM diet) on omasal flows of NSC and nitrogenous fractions, ruminal and total-tract digestibilities of nutrients, plasma concentration of AA, and milk yield and composition. Eight ruminally cannulated Holstein cows averaging (mean ± standard deviation) 31.4 ± 6.13 kg/d of milk, 136 ± 17.0 d in milk, and 611 ± 66.4 kg of body weight in the beginning of the experiment were used in a crossover design with 21-d periods (14 d for diet adaptation and 7 d for data and sample collection). Intake of total ethanol-soluble carbohydrates (TESC; +150 g/d), starch (+129 g/d), and total NSC (TESC plus starch = +278 g/d) was greater with feeding the p.m.- than the a.m.-cut TIM diet. Likewise, the apparent ruminal digestibilities of TESC (+149 g/d), starch (+167 g/d), and total NSC (+316 g/d) increased in the p.m.-cut TIM diet. Diets, however, had no effect on the omasal flows and apparent ruminal and total-tract digestibilities of dry matter and organic matter. Intake of N increased in cows fed the p.m.- versus the a.m.-cut TIM diet (562 and 528 g/d, respectively) despite no effect of diets on dry matter intake. Diets did not affect the omasal flows of total nonammonia N, total bacterial nonammonia N, nonammonia and nonbacterial N, and individual AA, and the efficiency of microbial protein synthesis in the rumen. Contrarily, supply of rumen-degradable protein increased (+9.2%) in cows fed the p.m.-cut TIM diet, with this response driven by the 6.4% increase in N intake. Plasma concentrations of essential and nonessential AA followed the omasal flow of AA and were not changed by diets. Feeding the p.m.- versus the a.m.-cut diet significantly increased yields of 4% fat-corrected milk and milk fat, and tended to increase energy-corrected milk, milk true protein, and milk lactose yields. Overall, feeding the p.m.-cut TIM diet to mid-lactation dairy cows did not improve microbial protein synthesis and omasal flow of AA, and these responses were in line with the lack of a treatment effect on dry matter intake.


Asunto(s)
Lactancia , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Digestión , Femenino , Fermentación , Leche , Compuestos de Nitrógeno , Rumen/metabolismo , Ensilaje
10.
Neuroimage ; 218: 116959, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442638

RESUMEN

Neuroimaging evidence suggests that the aging brain relies on a more distributed set of cortical regions than younger adults in order to maintain successful levels of performance during demanding cognitive tasks. However, it remains unclear how task demands give rise to this age-related expansion in cortical networks. To investigate this issue, functional magnetic resonance imaging was used to measure univariate activity, network connectivity, and cognitive performance in younger and older adults during a working memory (WM) task. Here, individuals performed a WM task in which they held letters online while reordering them alphabetically. WM load was titrated to obtain four individualized difficulty levels with different set sizes. Network integration-defined as the ratio of within-versus between-network connectivity-was linked to individual differences in WM capacity. The study yielded three main findings. First, as task difficulty increased, network integration decreased in younger adults, whereas it increased in older adults. Second, age-related increases in network integration were driven by increases in right hemisphere connectivity to both left and right cortical regions, a finding that helps to reconcile existing theories of compensatory recruitment in aging. Lastly, older adults with higher WM capacity demonstrated higher levels of network integration in the most difficult task condition. These results shed light on the mechanisms of age-related network reorganization by demonstrating that changes in network connectivity may act as an adaptive form of compensation, with older adults recruiting a more distributed cortical network as task demands increase.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Cognición/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Neuroimagen , Desempeño Psicomotor/fisiología , Conducta Verbal , Adulto Joven
11.
Epidemiol Infect ; 148: e198, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892789

RESUMEN

This study aimed to analyse the survival of patients admitted to Brazilian hospitals due to the COVID-19 and estimate prognostic factors. This is a retrospective, multicentre cohort study, based on data from 46 285 hospitalisations for COVID-19 in Brazil. Survival functions were calculated using the Kaplan-Meier's method. The log-rank test compared the survival functions for each variable and from that, hazard ratios (HRs) were calculated, and the proportional hazard model was used in Cox multiple regression. The smallest survival curves were the ones for patients at the age of 68 years or more, black/mixed race, illiterate, living in the countryside, dyspnoea, respiratory distress, influenza-like outbreak, O2 saturation <95%, X-ray change, length of stay in the intensive care unit (ICU), invasive ventilatory support, previous heart disease, pneumopathy, diabetes, Down's syndrome, neurological disease and kidney disease. Better survival was observed in the influenza-like outbreak and in an asthmatic patient. The multiple model for increased risk of death when they were admitted to the ICU HR 1.28, diabetes HR 1.17, neurological disease HR 1.34, kidney disease HR 1.11, heart disease HR 1.14, black or mixed race of HR 1.50, asthma HR 0.71 and pneumopathy HR 1.12. This reinforces the importance of socio-demographic and clinical factors as a prognosis for death.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/mortalidad , Neumonía Viral/epidemiología , Neumonía Viral/mortalidad , Anciano , Brasil/epidemiología , COVID-19 , Estudios de Cohortes , Femenino , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
12.
J Dairy Sci ; 103(8): 6798-6809, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32505413

RESUMEN

The brown seaweed Ascophyllum nodosum is known to bioaccumulate iodine (I). Previous research showed a linear relationship between A. nodosum meal (ASCO) intake and milk I concentration in dairy cows. Thus, improving milk I concentration by supplementation of ASCO to dairy cows may be a compelling strategy to naturally boost I intake in humans. A sensitivity analysis was conducted to gain insights regarding how different milk I intakes affect the I status of pregnant women relative to the United States Institute of Medicine (US IOM) recommended dietary allowance (RDA; 220 µg/d) and the World Health Organization (WHO) recommended nutrient intake (RNI; 250 µg/d) for I. Four studies in which dairy cows received various amounts of ASCO generated the milk I data set used in the sensitivity analysis. The annual per capita consumption of 2% reduced-fat milk in the United States, converted to daily intake (i.e., 0.26 cup; 1 cup = 236.6 mL), was used as the actual milk intake in the simulations. Five additional milk intake scenarios (2, 3, 4, and 5 times the actual per capita milk consumption and the 3 cups-equivalent recommended by the 2015-2020 Dietary Guidelines for American were also included in the sensitivity analysis with varying milk I concentrations (180, 765, and 483 µg/L). The 180, 765, and 483 µg/L values are milk I concentrations derived from cows not receiving ASCO or fed various amounts of ASCO in the diet or a single level (113 g/d) during the grazing season, respectively. With the actual United States milk per capita consumption of 0.26 cup/d and milk I concentrations of 180, 765, and 483 µg/L, 5.09, 21.7, and 13.6% of the RDA for I for pregnant women were met based on the US IOM, respectively. Similarly, 4.48, 19, and 12% of the RNI for I advised by the WHO was achieved with intake of 0.26 cup/d of milk containing I concentrations of 180, 765, and 483 µg/L, respectively. When 3 cups/d was included in the simulations, 58.2, 247, and 156% (US IOM), and 51.2, 217, and 137% (WHO) of the RDA or RNI for I required by gestating women was satisfied with milk I concentrations of 180, 765, and 483 µg/L, respectively. A regression analysis between I intake and milk I concentration revealed that 103 g/d of ASCO in the diet of dairy cows reached the maximum 500 µg/L threshold of I in milk recommended by the European Food Society Authority. Overall, milk from dairy cows fed ASCO can prevent I deficiency in pregnant women, but the amount of ASCO fed to cows needs to be fine-tuned to avoid excess I in milk. Further research is required to better understand the interactions between goitrogenic compounds from forages and concentrates and milk I concentration in cows fed ASCO. Research to evaluate the concentration of I in retail organic milk should be also conducted because of the high prevalence of ASCO fed in organic dairies in the United States.


Asunto(s)
Alimentación Animal , Ascophyllum , Suplementos Dietéticos , Yodo/deficiencia , Yodo/metabolismo , Leche/química , Complicaciones del Embarazo/terapia , Alimentación Animal/análisis , Animales , Bovinos , Suplementos Dietéticos/análisis , Femenino , Humanos , Lactancia , Estado Nutricional , Embarazo , Estados Unidos
13.
J Dairy Sci ; 103(6): 5726-5739, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31864742

RESUMEN

Evaluation of feed efficiency (FE; calculated as energy-corrected milk yield/dry matter intake) and milk nitrogen efficiency (MNE; calculated as milk N yield/N intake) is needed to help farmers make decisions regarding the economic and environmental sustainability of dairy farms. Our primary objective was to compare FE and MNE data obtained from studies conducted with organic versus conventional dairy cows. Specifically, 3 data sets were constructed to meet this goal: (1) the organic Jersey data set (ORG-JE) built with studies (n = 11) done at the University of New Hampshire Burley-Demeritt Organic Dairy Research Farm (Lee, NH), (2) the conventional Jersey data set (CON-JE) constructed using 19 experiments reported in the literature, and (3) the organic non-Jersey-breed (mostly Holstein, Swedish Red, and Norwegian Red) data set (ORG-NJE) created with 11 published studies. Comparisons were made between ORG-JE and CON-JE and between ORG-JE and ORG-NJE. A second objective was to compare the enteric methane (CH4) emission data set from studies using organic Jerseys (n = 5) with those using conventional Jerseys (n = 4). Cows used in the ORG-JE data set had lower FE (-16%) and MNE (-15.5%) than cows used in the CON-JE counterpart, possibly because dry matter intake increased by an average of 10.4% in organic cows. Feed efficiency and MNE computed from cows belonging to the ORG-NJE data set were intermediate between ORG-JE and CON-JE. Measured CH4 intensity (g/kg of energy-corrected milk) from cows in the ORG-JE CH4 data set increased by 71% compared with that from cows in the CON-JE CH4 data set. Estimated FE and enteric CH4 emissions revealed that Wisconsin organic dairies with the heaviest reliance on forage sources and longest grazing time during the summer were the least feed efficient and emitted the greatest amount of CH4 per kilogram of energy-corrected milk at the animal and whole-farm levels. Overall, the comparisons of FE, MNE, and enteric CH4 emissions between organic and conventional dairies and within organic systems made in this symposium review should be interpreted cautiously because they are based on study means and small data sets. Research is needed to better characterize the performance, efficiency, profitability, and carbon emissions of forage-based organic dairies in the United States, including the fast-growing "grass-fed" segment, which relies exclusively on forage diets. The effect of large organic dairies on the economic and social sustainability of small and mid-size organic dairy operations nationwide also deserves further investigation.


Asunto(s)
Alimentación Animal/análisis , Crianza de Animales Domésticos/métodos , Bovinos/fisiología , Gases de Efecto Invernadero , Leche/química , Nitrógeno/metabolismo , Animales , Femenino , Nitrógeno/química
14.
J Dairy Sci ; 103(5): 4327-4339, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32147270

RESUMEN

We aimed to evaluate the effects of feeding sugarcane liquid molasses (LM) with or without a commercial buffer mix (BFM) on ruminal fermentation parameters, milk fatty acid (FA) profile, and milk yield and composition in dairy cows fed high-concentrate diets (35:65 forage-to-concentrate ratio). Eight multiparous Holstein cows (4 ruminally cannulated) averaging 165 ± 12 d in milk at the beginning of the study were randomly assigned to a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Cows were fed the following diets: (1) no LM or BFM supplementation (CTRL), (2) LM without BFM supplementation (MOL), (3) BFM without LM supplementation (BUF), and (4) LM plus BFM supplementation (COMBO). These 4 isonitrogenous and isoenergetic diets were formulated by replacing (dry matter basis) 5% ground corn with LM, whereas BFM replaced wheat bran at 0.8% of the diet. Significant LM × BFM interactions were observed for the duration of ruminal pH below 5.8, molar proportion of propionate, acetate-to-propionate ratio, milk proportions of trans-10 18:1 and total trans FA, and concentration and yield of milk fat. Feeding MOL and BUF alone were effective on reducing the time that ruminal pH remained below 5.8 compared with the CTRL treatment, and the COMBO diet decreased it further. A similar pattern was observed for the ruminal molar proportion of propionate. The milk proportions of trans-10 18:1 and total trans FA dropped significantly with BFM or LM supplementation versus cows fed CTRL, and the COMBO diet decreased these variables further. Note, however, that these changes elicited by the COMBO diet were not in the same magnitude as those caused by MOL or BUF fed alone. The ruminal molar proportion of acetate increased with the BUF diet and that of butyrate increased in cows fed MOL, but mean ruminal pH was not affected by treatments. Diets with LM resulted in increased concentrations of short- and medium-chain FA in milk fat. The yield of 3.5% fat-corrected milk increased significantly in cows fed MOL or BUF due to the improved concentration of milk fat. A trend and a significant increase for energy-corrected milk were observed with feeding MOL or BUF, respectively. Overall, inclusion of LM and BFM appears to reduce milk trans-10 18:1 FA and total trans FA by modulating ruminal pH and volatile FA profile in cows fed high-concentrate diets.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Ácidos Grasos/metabolismo , Leche/química , Melaza/análisis , Rumen/metabolismo , Alimentación Animal/análisis , Animales , Suplementos Dietéticos/análisis , Femenino , Fermentación , Distribución Aleatoria , Saccharum/química
15.
J Dairy Sci ; 103(4): 3161-3176, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32089313

RESUMEN

We showed previously that dairy cows fed [diet dry matter (DM) basis] 25% finely ground field pea (GFP) plus rumen-protected (RP)-Met and RP-Lys had greater milk true protein yield and plasma Met concentration, but lower plasma His, compared with those fed GFP without rumen-protected AA supplementation. The goal of the present study was to investigate the effects of diets containing soybean meal (SBM) or canola meal (CM) with or without a source of RP-Met on production, nutrient digestibility, and N metabolism in cows fed 25% GFP. Sixteen mid-lactation Holstein cows were used in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments (21-d periods). Cows were fed (DM basis) 35% corn silage, 14% grass-legume haylage, 25% GFP, and 11% SBM or 13.5% CM with or without 0.095% RP-Met supplementation as Smartamine M (Adisseo USA Inc., Alpharetta, GA). Protein source effects were observed for most production variables; cows fed diets containing CM plus GFP had greater DM intake, yields of milk and milk fat and true protein, and milk N efficiency than those offered SBM plus GFP. Feeding CM plus GFP also reduced the concentrations of milk urea N and plasma urea N, and the urinary excretion of NH3 N and urea N, suggesting improved N use efficiency. Moreover, replacing SBM with CM increased the concentrations of all essential AA (except Arg) in plasma collected from the coccygeal blood vessels. A protein source × RP-Met interaction was observed for the concentration of His in coccygeal plasma, with circulating His decreasing only when RP-Met was supplemented to the diet containing SBM plus GFP. Based on the arteriovenous difference method, Lys was the first limiting AA overall, with Met being the first limiting AA in diets that did not receive RP-Met. Apparent total-tract digestibilities of DM, organic matter, N, and acid detergent fiber increased with feeding SBM plus GFP versus CM plus GFP. Most variables were not affected by RP-Met supplementation, except plasma Met concentration, which increased by 63%. Collectively, our results indicate that CM appears to be a better companion rumen-degradable protein source to GFP than SBM, due to improved yields of milk and milk protein and N use efficiency.


Asunto(s)
Alimentación Animal , Bovinos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Metionina/farmacología , Animales , Brassica napus , Industria Lechera , Femenino , Lactancia , Metionina/administración & dosificación , Leche , Proteínas de la Leche/metabolismo , Pisum sativum , Rumen/metabolismo , Glycine max/metabolismo
16.
J Dairy Sci ; 103(8): 7498-7508, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32448582

RESUMEN

The objective of this experiment was to identify and characterize the bovine milk proteome within the skim milk fraction and milk fat globule membrane (MFGM)-associated fraction from 16 organically certified lactating Jersey cows after a short term of grazing pastures with or without annual forage crops (AFC). Cows were offered a partial mixed ration (∼60% of dry matter intake) and approximately 40% of their total dry matter intake as herbage. Eight cows were offered a cool-season grass-legume herbage (GLH), which included orchardgrass (Dactylis glomerata), timothy (Phleum pratense), Kentucky bluegrass (Poa pratensis), and white clover (Trifolium repens). The other 8 cows were offered the same GLH strip-tilled with the AFC, including oat (Avena sativa), millet (Pennisetum glaucum), teff (Eragrostis tef), buckwheat (Fagopyrum esculentum), and chickling vetch (Lathyrus sativus). Milk samples were collected from each cow during a.m. and p.m. milkings on d 19 to 21 of grazing, and composite milk samples per cow were analyzed for (1) the high-abundance milk protein profile, (2) the skim milk low-abundance protein-enriched proteome, and (3) the MFGM proteome. Of the 443 proteins identified in the skim and MFGM proteomes, 433 were included in statistical analysis, including 68 proteins identified in the skim milk fraction and 365 in the MFGM-associated fraction. Analysis of the skim and MFGM proteomes encompassed unique gene ontology profiles and proportions of functional classifications. In response to diet, αS1-casein as well as 8 low-abundance proteins were present in higher concentration or abundance in milk from cows grazing the GLH strip-tilled with the AFC compared with milk from cows grazing GLH, suggesting that even short-term grazing of pastures including some AFC may affect the milk proteome.


Asunto(s)
Alimentación Animal , Dieta/veterinaria , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Herbivoria , Gotas Lipídicas/metabolismo , Leche/química , Plantas Comestibles , Proteoma/metabolismo , Alimentación Animal/análisis , Animales , Biodiversidad , Bovinos , Fabaceae , Femenino , Lactancia , Proteínas de la Leche/análisis , Plantas Comestibles/clasificación , Poaceae , Estaciones del Año , Trifolium
17.
J Dairy Sci ; 102(2): 1294-1311, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30591336

RESUMEN

Flaxseed has been extensively used as a supplement for dairy cows because of its high concentrations of energy and the n-3 fatty acid (FA) cis-9,cis-12,cis-15 18:3. However, limited information is available regarding the effect of ground flaxseed on dry matter intake (DMI), ruminal fermentation, and nutrient utilization in grazing dairy cows. Twenty multiparous Jersey cows averaging (mean ± standard deviation) 111 ± 49 d in milk in the beginning of the study were used in a randomized complete block design to investigate the effects of supplementing herbage (i.e., grazed forage) with ground corn-soybean meal mix (control diet = CTRL) or ground flaxseed (flaxseed diet = FLX) on animal production, milk FA, ruminal metabolism, and nutrient digestibility. The study was conducted from June to September 2013, with data and sample collection taking place on wk 4, 8, 12, and 16. Cows were fed a diet formulated to yield a 60:40 forage-to-concentrate ratio consisting of (dry matter basis): 40% cool-season perennial herbage, 50% partial total mixed ration, and 10% of ground corn-soybean meal mix or 10% ground flaxseed. However, estimated herbage DMI averaged 5.59 kg/d or 34% of the total DMI. Significant treatment by week interactions were observed for milk and blood urea N, and several milk FA (e.g., trans-10 18:1). No significant differences between treatments were observed for herbage and total DMI, milk yield, feed efficiency, concentrations and yields of milk components, and urinary excretion of purine derivatives. Total-tract digestibility of organic matter decreased, whereas that of neutral detergent fiber increased with feeding FLX versus CTRL. No treatment effects were observed for ruminal concentrations of total volatile FA and NH3-N, and ruminal proportions of acetate and propionate. Ruminal butyrate tended to decrease, and the acetate-to-propionate ratio decreased in the FLX diet. Most saturated and unsaturated FA in milk fat were changed. Specifically, milk proportion of cis-9,cis-12,cis-15 18:3, Σn-3 FA, and Σ18C FA increased, whereas that of cis-9,cis-12 18:2, Σn-6 FA, Σ odd-chain FA, Σ<16C FA, and Σ16C FA decreased with feeding FLX versus the CTRL diet. In conclusion, feeding FLX did not change yields of milk and milk components, but increased milk n-3 FA. Therefore, costs and industry adoption of premiums for n-3-enriched milk will determine the adoption of ground flaxseed in pasture-based dairy farms.


Asunto(s)
Bovinos/metabolismo , Ácidos Grasos/análisis , Lino , Lactancia/fisiología , Leche/química , Nutrientes/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Lino/metabolismo , Rumen/metabolismo , Glycine max/metabolismo
18.
J Dairy Sci ; 102(9): 8040-8058, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31279546

RESUMEN

Kelp meal (KM) is a supplement made from the brown seaweed Ascophyllum nodosum, known to bioaccumulate iodine (I) and to be the richest source of phlorotannins, which can inhibit ruminal proteolysis and microbial growth. The objective of this study was to investigate the effects of KM on production, milk I, concentrations of blood metabolites, apparent total-tract digestibility of nutrients, and CH4 emissions in grazing dairy cows. Eight multiparous Jersey cows averaging (mean ± SD) 175 ± 60 d in milk and 12 primiparous Jersey cows averaging 142 ± 47 d in milk at the beginning of the study were assigned to either 0 g/d of KM (control diet, CTRL) or 113 g/d of KM (brown seaweed diet, BSW) in a randomized complete block design. Diets were formulated to yield a 70:30 forage-to-concentrate ratio and consisted of (dry matter basis): 48% cool-season perennial herbage and 52% partial TMR (pTMR). Each experimental period (n = 3) lasted 28 d, with data and sample collection taking place during the last 7 d of each period. Cows had approximately 16.5 h of access to pasture daily. Herbage dry matter intake increased, and total dry matter intake tended to increase in cows fed BSW versus the CTRL diet. Milk yield and concentrations and yields of milk components were not affected by diets. Similarly, blood concentrations of cortisol, glucose, fatty acids, and thyroxine did not change with feeding CTRL or BSW. However, a diet × period interaction was observed for milk I concentration; cows offered the BSW diet had greater milk I concentration during periods 1, 2, and 3, but the largest difference between BSW and CTRL was observed in period 2 (579 vs. 111 µg/L, respectively). Except for period 2, the concentration of milk I in cows fed KM did not exceed the 500 µg/L threshold recommended for human consumption. Diet × period interactions were also found for serum triiodothyronine concentration, total-tract digestibilities of crude protein and acid detergent fiber, CH4 production, and urinary excretion of purine derivatives. Overall, the lack of KM effects on milk yield and concentrations and yields of milk components indicate that dairy producers should consider costs before making KM supplementation decisions during the grazing season. Future research is needed to evaluate the concentration of I in retail organic milk because of the high prevalence of KM supplementation in northeastern and midwestern US organic dairies and possibly in other regions of the country.


Asunto(s)
Alimentación Animal , Ascophyllum , Bovinos/metabolismo , Suplementos Dietéticos , Yodo/metabolismo , Kelp , Leche/metabolismo , Alimentación Animal/análisis , Animales , Industria Lechera , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Suplementos Dietéticos/análisis , Digestión , Ácidos Grasos/metabolismo , Femenino , Lactancia , Nutrientes , Distribución Aleatoria
19.
J Dairy Sci ; 102(5): 4138-4154, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30852019

RESUMEN

The dairy industry can benefit from low crude protein (CP) diets due to reduced N excretion, but shortages of Met, Lys, and His may limit milk protein synthesis. We studied the effect of incremental amounts of rumen-protected (RP)-His on plasma and muscle AA profile, nutrient utilization, and yields of milk and milk true protein in dairy cows. Eight multiparous Holstein cows (130 ± 30 d in milk) were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with 28-d experimental periods. Treatments included a basal diet composed (dry matter basis) of 50% corn silage, 15% haylage, and 35% concentrate supplemented with 0, 82, 164, and 246 g/d of RP-His and 11 g/d of RP-Met. Milk, plasma, and muscle samples were collected weekly or every other week during all 4 periods, whereas spot urine and fecal grab samples were taken only in wk 4 of each period. Data were analyzed individually by week using linear, quadratic, and cubic orthogonal polynomials and repeated measures. Plasma His increased linearly with RP-His during wk 1 (30.3 to 57.2 µM) to wk 4 (33.2 to 63.1 µM). Plasma carnosine increased linearly with supplemental RP-His except in wk 2. No treatment effect was observed for plasma 3-methylhistidine except a quadratic effect in wk 3. Inclusion of RP-His showed linear effects on muscle His in wk 2 (20.1 to 32.5 µM) and 4 (20.3 to 35.5 µM). Whereas muscle anserine and carnosine concentrations were not affected by treatments in wk 4, anserine responded quadratically and carnosine showed a trend for a quadratic response to RP-His in wk 2. During wk 4, treatments did not affect urinary excretion of total purine derivatives, as well as dry matter intake and milk concentrations of fat and true protein. In contrast, milk yield tended to increase linearly (31.2 to 32.7 kg/d) and milk true protein yield responded linearly (0.93 to 0.98 kg/d) and tended to increase quadratically to RP-His supplementation in wk 4. Also, milk urea-N (11.7 to 12.9 mg/dL) and urinary excretion of urea-N (23.7 to 27.0% of N intake) increased linearly with feeding RP-His in wk 4. Overall, RP-His was effective to enhance plasma and muscle concentrations of His and milk protein synthesis. Elevated milk urea-N and urinary excretion of urea-N suggest that plasma His may have exceeded the requirement with excess N converted to urea in the liver. Future research is needed to determine the bioavailability of RP-His supplements to improve the accuracy of diet formulation for AA.


Asunto(s)
Bovinos/metabolismo , Dieta con Restricción de Proteínas , Dieta/veterinaria , Histidina/farmacología , Proteínas de la Leche/metabolismo , Músculo Esquelético/metabolismo , Rumen/metabolismo , Animales , Industria Lechera , Suplementos Dietéticos , Femenino , Histidina/sangre , Histidina/metabolismo , Lactancia , Metilhistidinas , Leche/metabolismo , Distribución Aleatoria , Ensilaje , Urea/metabolismo , Zea mays
20.
Persoonia ; 42: 291-473, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31551622

RESUMEN

Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA