Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Neurol ; 21(1): 412, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706674

RESUMEN

BACKGROUND: Anti-NMDA receptor encephalitis is an immune-mediated disorder characterized by antibodies against the GluN1 subunit of the NMDA receptor that is increasingly recognized as a treatable cause of childhood epileptic encephalopathy. In adults, the disorder has been associated with reversible changes in brain volume over the course of treatment and recovery, but in children, little is known about its time course and associated imaging manifestations. CASE PRESENTATION: A previously healthy 20-month-old boy presented with first-time unprovoked seizures, dysautonomia, and dyskinesia. Paraneoplastic workup was negative, but CSF was positive for anti-NMDAR antibodies. The patient's clinical condition waxed and waned over a 14-month course of treatment with first- and second-line immunotherapies (including steroids, IVIG, rituximab, and cyclophosphamide). Serial brain MRIs scans obtained at 5 time points spanning this same period showed no abnormal signal or enhancement but were remarkable for cycles of reversible regional cortical volume loss. All scans included identical 1-mm resolution 3D T1-weighted sequences obtained on the same 3 T scanner. Using a novel longitudinal processing stream in FreeSurfer6 (Reuter M, et. al, Neuroimage 61:1402-18, 2012) we quantified the rate of change in cortical volume at each vertex (% volume change per month) between consecutive scans and correlated these changes with the time course of the patient's treatment and clinical response. We found regionally specific changes in cortical volume (up to 7% per month) that preferentially affected the frontal and occipital lobes and paralleled the patient's clinical course, with clinical decline associated with volume loss and clinical improvement associated with volume gain. CONCLUSIONS: Our results suggest that reversible cortical volume loss in anti-NMDA encephalitis has a regional specificity that mirrors many of the clinical symptoms associated with the disorder and tracks the dynamics of disease severity over time. This case illustrates how quantitative morphometric techniques can be applied to clinical imaging data to reveal patterns of brain change that may provide insight into disease pathophysiology. More widespread application of this approach might reveal regional and temporal patterns specific to different types of autoimmune encephalitis, providing a tool for diagnosis and a surrogate marker for monitoring treatment response.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Encefalitis Antirreceptor N-Metil-D-Aspartato/terapia , Autoanticuerpos , Encéfalo/diagnóstico por imagen , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Receptores de N-Metil-D-Aspartato
2.
Brain ; 142(2): 460-470, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689776

RESUMEN

Mounting evidence indicates that the polygenic basis of late-onset Alzheimer's disease can be harnessed to identify individuals at greatest risk for cognitive decline. We have previously developed and validated a polygenic hazard score comprising of 31 single nucleotide polymorphisms for predicting Alzheimer's disease dementia age of onset. In this study, we examined whether polygenic hazard scores are associated with: (i) regional tracer uptake using amyloid PET; (ii) regional volume loss using longitudinal MRI; (iii) post-mortem regional amyloid-ß protein and tau associated neurofibrillary tangles; and (iv) four common non-Alzheimer's pathologies. Even after accounting for APOE, we found a strong association between polygenic hazard scores and amyloid PET standard uptake volume ratio with the largest effects within frontal cortical regions in 980 older individuals across the disease spectrum, and longitudinal MRI volume loss within the entorhinal cortex in 607 older individuals across the disease spectrum. We also found that higher polygenic hazard scores were associated with greater rates of cognitive and clinical decline in 632 non-demented older individuals, even after controlling for APOE status, frontal amyloid PET and entorhinal cortex volume. In addition, the combined model that included polygenic hazard scores, frontal amyloid PET and entorhinal cortex volume resulted in a better fit compared to a model with only imaging markers. Neuropathologically, we found that polygenic hazard scores were associated with regional post-mortem amyloid load and neuronal neurofibrillary tangles, even after accounting for APOE, validating our imaging findings. Lastly, polygenic hazard scores were associated with Lewy body and cerebrovascular pathology. Beyond APOE, we show that in living subjects, polygenic hazard scores were associated with amyloid deposition and neurodegeneration in susceptible brain regions. Polygenic hazard scores may also be useful for the identification of individuals at the highest risk for developing multi-aetiological dementia.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Herencia Multifactorial/genética , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/genética , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/genética
3.
Acta Neuropathol ; 137(2): 209-226, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30413934

RESUMEN

Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as important for Alzheimer's disease (AD) pathogenesis. Beyond the ε4 allele of apolipoprotein E (APOE), comparatively little is known about whether CV-associated genes also increase risk for AD. Using large genome-wide association studies and validated tools to quantify genetic overlap, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with AD and one or more CV-associated RFs, namely body mass index (BMI), type 2 diabetes (T2D), coronary artery disease (CAD), waist hip ratio (WHR), total cholesterol (TC), triglycerides (TG), low-density (LDL) and high-density lipoprotein (HDL). In fold enrichment plots, we observed robust genetic enrichment in AD as a function of plasma lipids (TG, TC, LDL, and HDL); we found minimal AD genetic enrichment conditional on BMI, T2D, CAD, and WHR. Beyond APOE, at conjunction FDR < 0.05 we identified 90 SNPs on 19 different chromosomes that were jointly associated with AD and CV-associated outcomes. In meta-analyses across three independent cohorts, we found four novel loci within MBLAC1 (chromosome 7, meta-p = 1.44 × 10-9), MINK1 (chromosome 17, meta-p = 1.98 × 10-7) and two chromosome 11 SNPs within the MTCH2/SPI1 region (closest gene = DDB2, meta-p = 7.01 × 10-7 and closest gene = MYBPC3, meta-p = 5.62 × 10-8). In a large 'AD-by-proxy' cohort from the UK Biobank, we replicated three of the four novel AD/CV pleiotropic SNPs, namely variants within MINK1, MBLAC1, and DDB2. Expression of MBLAC1, SPI1, MINK1 and DDB2 was differentially altered within postmortem AD brains. Beyond APOE, we show that the polygenic component of AD is enriched for lipid-associated RFs. We pinpoint a subset of cardiovascular-associated genes that strongly increase the risk for AD. Our collective findings support a disease model in which cardiovascular biology is integral to the development of clinical AD in a subset of individuals.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Anciano , Anciano de 80 o más Años , Alelos , Apolipoproteínas E/genética , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
4.
Acta Neuropathol ; 135(1): 85-93, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29177679

RESUMEN

There is an urgent need for identifying nondemented individuals at the highest risk of progressing to Alzheimer's disease (AD) dementia. Here, we evaluated whether a recently validated polygenic hazard score (PHS) can be integrated with known in vivo cerebrospinal fluid (CSF) or positron emission tomography (PET) biomarkers of amyloid, and CSF tau pathology to prospectively predict cognitive and clinical decline in 347 cognitive normal (CN; baseline age range = 59.7-90.1, 98.85% white) and 599 mild cognitively impaired (MCI; baseline age range = 54.4-91.4, 98.83% white) individuals from the Alzheimer's Disease Neuroimaging Initiative 1, GO, and 2. We further investigated the association of PHS with post-mortem amyloid load and neurofibrillary tangles in the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort (N = 485, age at death range = 71.3-108.3). In CN and MCI individuals, we found that amyloid and total tau positivity systematically varies as a function of PHS. For individuals in greater than the 50th percentile PHS, the positive predictive value for amyloid approached 100%; for individuals in less than the 25th percentile PHS, the negative predictive value for total tau approached 85%. High PHS individuals with amyloid and tau pathology showed the steepest longitudinal cognitive and clinical decline, even among APOE ε4 noncarriers. Among the CN subgroup, we similarly found that PHS was strongly associated with amyloid positivity and the combination of PHS and biomarker status significantly predicted longitudinal clinical progression. In the ROSMAP cohort, higher PHS was associated with higher post-mortem amyloid load and neurofibrillary tangles, even in APOE ε4 noncarriers. Together, our results show that even after accounting for APOE ε4 effects, PHS may be useful in MCI and preclinical AD therapeutic trials to enrich for biomarker-positive individuals at highest risk for short-term clinical progression.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Pronóstico , Análisis de Supervivencia
5.
Front Neurosci ; 18: 1258996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469573

RESUMEN

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion: Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

6.
Ann Clin Transl Neurol ; 10(4): 536-552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36744645

RESUMEN

OBJECTIVE: We explored the relationship between regional PRNP expression from healthy brain tissue and patterns of increased and decreased diffusion and regional brain atrophy in patients with sporadic Creutzfeldt-Jakob disease (sCJD). METHODS: We used PRNP microarray data from 6 healthy adult brains from Allen Brain Institute and T1-weighted and diffusion-weighted MRIs from 34 patients diagnosed with sCJD and 30 age- and sex-matched healthy controls to construct partial correlation matrices across brain regions for specific measures of interest: PRNP expression, mean diffusivity, volume, cortical thickness, and local gyrification index, a measure of cortical folding. RESULTS: Regional patterns of PRNP expression in the healthy brain correlated with regional patterns of diffusion signal abnormalities and atrophy in sCJD. Among different measures of cortical morphology, regional patterns of local gyrification index in sCJD most strongly correlated with regional patterns of PRNP expression. At the vertex-wise level, different molecular subtypes of sCJD showed distinct regional correlations in local gyrification index across the cortex. Local gyrification index correlation patterns most closely matched patterns of PRNP expression in sCJD subtypes known to have greatest pathologic involvement of the cerebral cortex. INTERPRETATION: These results suggest that the specific genetic and molecular environment in which the prion protein is expressed confer variable vulnerability to misfolding across different brain regions that is reflected in patterns of imaging findings in sCJD. Further work in larger samples will be needed to determine whether these regional imaging patterns can serve as reliable markers of distinct disease subtypes to improve diagnosis and treatment targeting.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Adulto , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagen , Síndrome de Creutzfeldt-Jakob/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Proteínas Priónicas/genética
7.
bioRxiv ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37503230

RESUMEN

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, cerebellum) with average gene expression values for 15,633 protein-coding genes, including 50 genes known to be associated with ALS, FTD, or ALS-FTD. We then evaluated whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n=19). Lastly, we explored whether genes with significant C9orf72 radiogenomic correlations (i.e., 'C9orf72 gene network') were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 1,748 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 gene network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic motor neurons in the spinal cord, and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with multiple neurotransmitter systems, protein ubiquitination, autophagy, and MAPK signaling, among others. Conclusions: Considered together, we identified a network of C9orf72-associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

8.
Alzheimers Dement (Amst) ; 15(4): e12482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780862

RESUMEN

Early-onset Alzheimer's disease (AD) is highly heritable, yet only 10% of cases are associated with known pathogenic mutations. For early-onset AD patients without an identified autosomal dominant cause, we hypothesized that their early-onset disease reflects further enrichment of the common risk-conferring single nucleotide polymorphisms associated with late-onset AD. We applied a previously validated polygenic hazard score for late-onset AD to 193 consecutive patients diagnosed at our tertiary dementia referral center with symptomatic early-onset AD. For comparison, we included 179 participants with late-onset AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus late-onset AD. The polygenic hazard score was not associated with age-of-onset or disease biomarkers within early-onset AD. Early-onset AD does not represent an extreme enrichment of the common single nucleotide polymorphisms associated with late-onset AD. Further exploration of novel genetic risk factors of this highly heritable disease is warranted.Highlights: There is a unique genetic architecture of early- versus late-onset Alzheimer's disease (AD).Late-onset AD polygenic risk is not an explanation for early-onset AD.Polygenic risk of late-onset AD does not predict early-onset AD biology.Unique genetic architecture of early- versus late-onset AD parallels AD heterogeneity.

9.
Front Neurosci ; 15: 639078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732107

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and intertwined neurodegenerative diseases. Historically, ALS and FTD were considered distinct disorders given differences in presenting clinical symptoms, disease duration, and predicted risk of developing each disease. However, research over recent years has highlighted the considerable clinical, pathological, and genetic overlap of ALS and FTD, and these two syndromes are now thought to represent different manifestations of the same neuropathological disease spectrum. In this review, we discuss the need to shift our focus from studying ALS and FTD in isolation to identifying the biological mechanisms that drive these diseases-both common and distinct-to improve treatment discovery and therapeutic development success. We also emphasize the importance of genomic data to facilitate a "precision medicine" approach for treating ALS and FTD.

10.
Sci Rep ; 8(1): 13373, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190613

RESUMEN

Tuberous sclerosis complex (TSC), a heritable neurodevelopmental disorder, is caused by mutations in the TSC1 or TSC2 genes. To date, there has been little work to elucidate regional TSC1 and TSC2 gene expression within the human brain, how it changes with age, and how it may influence disease. Using a publicly available microarray dataset, we found that TSC1 and TSC2 gene expression was highest within the adult neo-cerebellum and that this pattern of increased cerebellar expression was maintained throughout postnatal development. During mid-gestational fetal development, however, TSC1 and TSC2 expression was highest in the cortical plate. Using a bioinformatics approach to explore protein and genetic interactions, we confirmed extensive connections between TSC1/TSC2 and the other genes that comprise the mammalian target of rapamycin (mTOR) pathway, and show that the mTOR pathway genes with the highest connectivity are also selectively expressed within the cerebellum. Finally, compared to age-matched controls, we found increased cerebellar volumes in pediatric TSC patients without current exposure to antiepileptic drugs. Considered together, these findings suggest that the cerebellum may play a central role in TSC pathogenesis and may contribute to the cognitive impairment, including the high incidence of autism spectrum disorder, observed in the TSC population.


Asunto(s)
Cerebelo/metabolismo , Regulación Neoplásica de la Expresión Génica , Trastornos del Neurodesarrollo/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/biosíntesis , Proteína 2 del Complejo de la Esclerosis Tuberosa/biosíntesis , Esclerosis Tuberosa/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cerebelo/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/patología , Esclerosis Tuberosa/patología
11.
Transl Psychiatry ; 8(1): 73, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29636460

RESUMEN

Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Neurodegenerativas/genética , Receptores CXCR4/genética , Animales , Encéfalo/metabolismo , Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Ratones Transgénicos , Microglía/metabolismo , Polimorfismo de Nucleótido Simple , Receptores CXCR4/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA