Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098122

RESUMEN

Coronin proteins are evolutionary conserved WD repeat containing proteins that have been proposed to carry out different functions. In Dictyostelium, the short coronin isoform, coronin A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation of multicellular development. Generally thought of as modulators of F-actin, coronin A and its mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent manner. Therefore, it remains unclear whether or not coronin A carries out its functions through its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known. Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells and in vitro. Interactome analysis showed the association with a diverse set of interaction partners, including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10 isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a time-dependent manner.


Asunto(s)
Actinas/metabolismo , Dictyostelium/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Conejos
2.
J Vis Exp ; (112)2016 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-27403805

RESUMEN

Dictyostelium discoideum amoeba are found in soil, feeding on bacteria. When food sources become scarce, they secrete factors to initiate a multicellular development program, during which single cells chemotax towards aggregation centers(1-4). This process is dependent on the release of cyclic adenosine monophosphate (cAMP)(5). cAMP is produced in waves through the concerted action of adenylate cyclase and phosphodiesterases, and binds to G protein-coupled cAMP receptors(6,7). A widely used assay to analyze the mechanisms involved in the developmental cycle of the lower eukaryote Dictyostelium discoideum is based on the observation of cell aggregation in submerged conditions(8,9). This protocol describes the analysis of the role of coronin A in the developmental cycle by starvation in tissue-culture plates submerged in balanced salt solution (BSS)(10). Coronin A is a member of the widely conserved protein family of coronins that have been implicated in a wide variety of activities(11,12). Dictyostelium cells lacking coronin A are unable to form multicellular aggregates, and this defect can be rescued by supplying pulses of cAMP, suggesting that coronin A acts upstream of the cAMP cascade(10). The techniques described in these studies provide robust tools to investigate functions of proteins during the initial stages of the developmental cycle of Dictyostelium discoideum upstream of the cAMP cascade. Therefore, utilizing this aggregation assay may allow the further study of coronin A function and advance our understanding of coronin biology.


Asunto(s)
Dictyostelium , Adenilil Ciclasas , Agregación Celular , AMP Cíclico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA