RESUMEN
We have developed a practical method to perform the reductive photocleavage of sulfonamides using thioureas as organophotocatalysts. This transformation, which tolerates a variety of substrates, occurs under mild reaction conditions in the presence of tetrabutylammonium borohydride as a reducing agent. Experimental and theoretical mechanistic investigations complete the study, shedding light on the nature of the active species involved in the photocatalytic process.
RESUMEN
Herein, we demonstrate for the first time that coumarins derived from [2.2]paracyclophane (pCp) can act as effective organo-photocatalysts and promote the reductive cleavage of sulfonamides under light-irradiation. In the presence of these original compounds, photodesulfonylation reactions occur under mild conditions at low catalyst loadings in the presence of Hantzsch ester. Theoretical and experimental investigations are described, which elucidate the reaction mechanism and the nature of the active species involved in the photocatalytic process. This proof-of-concept study paves the way for further application of pCps in the field of photocatalysis.
RESUMEN
This short review focuses on enantiopure planar chiral [2.2]paracyclophanes (pCps), a fascinating class of molecules that possess an unusual three-dimensional core and intriguing physicochemical properties. In the first part of the review, different synthetic strategies for preparing optically active pCps are described. Although classical resolution methods based on the synthesis and separation of diastereoisomeric products still dominate the field, recent advances involving the kinetic resolution of racemic compounds and the desymmetrization of meso derivatives open up new possibilities to access enantiopure key intermediates on synthetically useful scales. Due to their advantageous properties including high configurational and chemical stability, [2.2]paracyclophanes are increasingly employed in various research fields, ranging from stereoselective synthesis to material sciences. The applications of [2.2]paracyclophanes in asymmetric organocatalysis are described in the second part of the review. While historically enantiopure pCps have been mainly employed by organic chemists as chiral ligands in transition-metal catalysis, these compounds can also be used as efficient catalysts in metal-free reactions and may inspire the development of new transformations in the near future.
RESUMEN
The association of lanthanide ions and paracyclophane derivatives has been very scarcely reported in the literature. In this study, elaboration of five coordination lanthanide complexes involving the 1,4(1,4)-dibenzenacyclohexaphane-12,43-diylbis(diphenylphosphine oxide) ligand (L) was achieved with the determination of single-crystal X-ray diffraction structures of four mononuclear complexes of formula [Ln(hfac)3(L)] (hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate) (Ln = Dy(III) (1-Dy) and Yb(III) (2-Yb)) and [Ln(tta)3(L)] (tta- = 2-tenoyl-trifluoroacetylacetonate) (Ln = Dy(III) (3-Dy) and Yb(III) (4-Yb)) and one dinuclear complex [Na(Dy2(hfac)6(L)2)](BArF) (BArF- = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) (5-Dy). The compounds were characterized using elemental analysis, IR spectroscopy, DC and AC magnetic measurements and photophysical investigations. L is an efficient organic chromophore for the sensitization of both visible Dy(III) (1-Dy) and near-infrared Yb(III) (2-Yb and 4-Yb) luminescence. The combination of excitation and emission spectra allowed the determination of the crystal field spitting of both the 2F7/2 ground state and 2F5/2 excited state for 2-Yb and 4-Yb. Moreover, 3-Dy and the two Yb(III) derivatives displayed field-induced single-molecule magnet (SMM) behaviour with slow magnetic relaxation occurring through the Raman process only for 2-Yb and 4-Yb, whereas a combination of Orbach and Raman processes was identified for 3-Dy.