Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 26: 581-603, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19575671

RESUMEN

The neural crest is a multipotent stem cell–like population that gives rise to a wide range of derivatives in the vertebrate embryo including elements of the craniofacial skeleton and peripheral nervous system as well as melanocytes. The neural crest forms in a series of regulatory steps that include induction and specification of the prospective neural crest territory–neural plate border, specification of bona fide neural crest progenitors, and differentiation into diverse derivatives. These individual processes during neural crest ontogeny are controlled by regulatory circuits that can be assembled into a hierarchical gene regulatory network (GRN). Here we present an overview of the GRN that orchestrates the formation of cranial neural crest cells. Formulation of this network relies on information largely inferred from gene perturbation studies performed in several vertebrate model organisms. Our representation of the cranial neural crest GRN also includes information about direct regulatory interactions obtained from the cis-regulatory analyses performed to date, which increases the resolution of the architectural circuitry within the network.


Asunto(s)
Redes Reguladoras de Genes , Cresta Neural/metabolismo , Animales , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Vertebrados/embriología
2.
Nat Rev Mol Cell Biol ; 9(7): 557-68, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18523435

RESUMEN

The neural crest is a multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the peripheral nervous system to the craniofacial skeleton and pigment cells. A multimodule gene regulatory network mediates the complex process of neural crest formation, which involves the early induction and maintenance of the precursor pool, emigration of the neural crest progenitors from the neural tube via an epithelial to mesenchymal transition, migration of progenitor cells along distinct pathways and overt differentiation into diverse cell types. Here, we review our current understanding of these processes and discuss the molecular players that are involved in the neural crest gene regulatory network.


Asunto(s)
Diferenciación Celular/fisiología , Redes Reguladoras de Genes , Cresta Neural/embriología , Animales , Ciclo Celular/fisiología , Movimiento Celular/fisiología , Inducción Embrionaria , Uniones Comunicantes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis , Cresta Neural/anatomía & histología , Cresta Neural/fisiología , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/metabolismo
3.
Genes Dev ; 25(21): 2306-20, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22056673

RESUMEN

We report a multifunctional gene-trapping approach, which generates full-length Citrine fusions with endogenous proteins and conditional mutants from a single integration event of the FlipTrap vector. We identified 170 FlipTrap zebrafish lines with diverse tissue-specific expression patterns and distinct subcellular localizations of fusion proteins generated by the integration of an internal citrine exon. Cre-mediated conditional mutagenesis is enabled by heterotypic lox sites that delete Citrine and "flip" in its place mCherry with a polyadenylation signal, resulting in a truncated fusion protein. Inducing recombination with Cerulean-Cre results in fusion proteins that often mislocalize, exhibit mutant phenotypes, and dramatically knock down wild-type transcript levels. FRT sites in the vector enable targeted genetic manipulation of the trapped loci in the presence of Flp recombinase. Thus, the FlipTrap captures the functional proteome, enabling the visualization of full-length fluorescent fusion proteins and interrogation of function by conditional mutagenesis and targeted genetic manipulation.


Asunto(s)
Proteoma , Proteómica/métodos , Animales , Proteínas Bacterianas/genética , Bases de Datos de Proteínas , Embrión no Mamífero , Vectores Genéticos , Internet , Proteínas Luminiscentes/genética , Anotación de Secuencia Molecular , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Pez Cebra
4.
Semin Cell Dev Biol ; 23(3): 320-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22430756

RESUMEN

Although the epithelial to mesenchymal transition (EMT) is famous for its role in cancer metastasis, it also is a normal developmental event in which epithelial cells are converted into migratory mesenchymal cells. A prime example of EMT during development occurs when neural crest (NC) cells emigrate from the neural tube thus providing an excellent model to study the principles of EMT in a nonmalignant environment. NC cells start life as neuroepithelial cells intermixed with precursors of the central nervous system. After EMT, they delaminate and begin migrating, often to distant sites in the embryo. While proliferating and maintaining multipotency and cell survival the transitioning neural crest cells lose apicobasal polarity and the basement membrane is broken down. This review discusses how these events are coordinated and regulated, by series of events involving signaling factors, gene regulatory interactions, as well as epigenetic and post-transcriptional modifications. Even though the series of events involved in NC EMT are well known, the sequence in which these steps take place remains a subject of debate, raising the intriguing possibility that, rather than being a single event, neural crest EMT may involve multiple parallel mechanisms.


Asunto(s)
Células Epiteliales/citología , Transición Epitelial-Mesenquimal/fisiología , Mesodermo/citología , Neoplasias/patología , Cresta Neural/citología , Animales , Movimiento Celular , Humanos , Cresta Neural/embriología
5.
Nature ; 453(7198): 1064-71, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18563158

RESUMEN

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Asunto(s)
Cordados/genética , Evolución Molecular , Genoma/genética , Animales , Cordados/clasificación , Secuencia Conservada , Elementos Transponibles de ADN/genética , Duplicación de Gen , Genes/genética , Ligamiento Genético , Humanos , Intrones/genética , Cariotipificación , Familia de Multigenes , Filogenia , Polimorfismo Genético/genética , Proteínas/genética , Sintenía , Factores de Tiempo , Vertebrados/clasificación , Vertebrados/genética
6.
Development ; 137(3): 507-18, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20081195

RESUMEN

Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dI1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dI1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.


Asunto(s)
Aldehído Oxidorreductasas/fisiología , Médula Espinal/fisiología , Animales , Sitios de Unión , Pollos , Secuencia Conservada , Evolución Molecular , Factor Nuclear 1-alfa del Hepatocito , Proteínas de Homeodominio , Interneuronas , Proteínas con Homeodominio LIM , Ratones , Ratones Transgénicos , Proteínas Represoras , Factor 1 de Transcripción de Linfocitos T , Factores de Transcripción , Tretinoina/fisiología
7.
Nature ; 445(7128): 613-7, 2007 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-17237766

RESUMEN

The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Cordados/embriología , Organizadores Embrionarios/fisiología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Cordados/genética , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organizadores Embrionarios/efectos de los fármacos , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(8): 3570-5, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20139305

RESUMEN

The neural crest is a multipotent, stem cell-like population that migrates extensively in the embryo and forms a wide array of derivatives, ranging from neurons to melanocytes and cartilage. Analyses of the gene regulatory network driving neural crest development revealed Sox10 as one of the earliest neural crest-specifying genes, cell-autonomously driving delamination and directly regulating numerous downstream effectors and differentiation gene batteries. In search of direct inputs to the neural crest specifier module, we dissected the chick Sox10 genomic region and isolated two downstream regulatory regions with distinct spatiotemporal activity. A unique element, Sox10E2 represents the earliest-acting neural crest cis-regulatory element, critical for initiating Sox10 expression in newly formed cranial, but not vagal and trunk neural crest. A second element, Sox10E1, acts in later migrating vagal and trunk crest cells. Deep characterization of Sox10E2 reveals Sox9, Ets1, and cMyb as direct inputs mediating enhancer activity. ChIP, DNA-pull down, and gel-shift assays demonstrate their direct binding to the Sox10E2 enhancer in vivo, whereas mutation of their corresponding binding sites, or inactivation of the three upstream regulators, abolishes both reporter and endogenous Sox10 expression. Using cis-regulatory analysis as a tool, our study makes critical connections within the neural crest gene regulatory network, thus being unique in establishing a direct link of upstream effectors to a key neural crest specifier.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Cresta Neural/embriología , Factores de Transcripción SOXB1/metabolismo , Cráneo/embriología , Animales , Secuencia de Bases , Embrión de Pollo , Secuencia Conservada , Genómica , Humanos , Ratones , Datos de Secuencia Molecular , Células Madre Multipotentes/metabolismo , Cresta Neural/metabolismo , Ratas , Cráneo/metabolismo , Activación Transcripcional , Xenopus
9.
Proc Natl Acad Sci U S A ; 107(40): 17262-7, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855630

RESUMEN

The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this "Pre-pattern/Cooption" model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning.


Asunto(s)
Evolución Biológica , Maxilares/anatomía & histología , Lampreas , Modelos Biológicos , Vertebrados/anatomía & histología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lampreas/anatomía & histología , Lampreas/genética , Datos de Secuencia Molecular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/genética
10.
Dev Cell ; 13(3): 405-20, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17765683

RESUMEN

The vertebrate neural crest migrates from its origin, the neural plate border, to form diverse derivatives. We previously hypothesized that a neural crest gene regulatory network (NC-GRN) guides neural crest formation. Here, we investigate when during evolution this hypothetical network emerged by analyzing neural crest formation in lamprey, a basal extant vertebrate. We identify 50 NC-GRN homologs and use morpholinos to demonstrate a critical role for eight transcriptional regulators. The results reveal conservation in deployment of upstream factors, suggesting that proximal portions of the network arose early in vertebrate evolution and have been conserved for >500 million years. We found biphasic expression of neural crest specifiers and differences in deployment of some specifiers and effectors expected to confer species-specific properties. By testing the collective expression and function of neural crest genes in a single, basal vertebrate, we reveal the ground state of the NC-GRN and resolve ambiguities between model organisms.


Asunto(s)
Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Animales , ADN Complementario , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Biblioteca de Genes , Hibridación in Situ , Lampreas/embriología , Lampreas/genética , Modelos Biológicos , Oligonucleótidos Antisentido/farmacología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Development ; 136(24): 4155-64, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19934013

RESUMEN

Vertebrate cranial sensory ganglia have a dual origin from the neural crest and ectodermal placodes. In the largest of these, the trigeminal ganglion, Slit1-Robo2 signaling is essential for proper ganglion assembly. Here, we demonstrate a crucial role for the cell adhesion molecule N-cadherin and its interaction with Slit1-Robo2 during gangliogenesis in vivo. A common feature of chick trigeminal and epibranchial ganglia is the expression of N-cadherin and Robo2 on placodal neurons and Slit1 on neural crest cells. Interestingly, N-cadherin localizes to intercellular adherens junctions between placodal neurons during ganglion assembly. Depletion of N-cadherin causes loss of proper ganglion coalescence, similar to that observed after loss of Robo2, suggesting that the two pathways might intersect. Consistent with this possibility, blocking or augmenting Slit-Robo signaling modulates N-cadherin protein expression on the placodal cell surface concomitant with alteration in placodal adhesion. Lack of an apparent change in total N-cadherin mRNA or protein levels suggests post-translational regulation. Co-expression of N-cadherin with dominant-negative Robo abrogates the Robo2 loss-of-function phenotype of dispersed ganglia, whereas loss of N-cadherin reverses the aberrant aggregation induced by increased Slit-Robo expression. Our study suggests a novel mechanism whereby N-cadherin acts in concert with Slit-Robo signaling in mediating the placodal cell adhesion required for proper gangliogenesis.


Asunto(s)
Cadherinas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Células Receptoras Sensoriales/fisiología , Ganglio del Trigémino/fisiología , Animales , Adhesión Celular/fisiología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/fisiología , Neurogénesis/fisiología , Células Receptoras Sensoriales/citología , Transducción de Señal , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología
12.
Nature ; 441(7094): 750-2, 2006 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-16760978

RESUMEN

The neural crest, a defining character of vertebrates, is of prime importance to their evolutionary origin. To understand neural crest evolution, we explored molecular mechanisms underlying craniofacial development in the basal jawless vertebrate, sea lamprey (Petromyzon marinus), focusing on the SoxE (Sox8, Sox9 and Sox10) gene family. In jawed vertebrates, these are important transcriptional regulators of the neural crest, and the loss of Sox9 causes abnormal craniofacial development. Here we report that two lamprey SoxE genes are expressed in migrating neural crest and crest-derived prechondrocytes in posterior branchial arches, whereas a third paralogue is expressed later in the perichondrium and mandibular arch. Morpholino knock-down of SoxE1 reveals that it is essential for posterior branchial arch development, although the mandibular arch is unaffected. The results show that chondrogenic function of SoxE regulators can be traced to the lamprey-gnathostome common ancestor and indicate that lamprey SoxE genes might have undergone independent duplication to have distinct functions in mandibular versus caudal branchial arches. This work sheds light on the homology of vertebrate branchial arches and supports their common origin at the base of vertebrates.


Asunto(s)
Evolución Biológica , Proteínas de Peces/metabolismo , Cresta Neural/embriología , Cresta Neural/metabolismo , Petromyzon/embriología , Faringe/embriología , Faringe/metabolismo , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/metabolismo , Proteínas de Peces/genética , Datos de Secuencia Molecular , Cresta Neural/citología , Petromyzon/genética , Faringe/citología
13.
Nature ; 441(7090): 218-22, 2006 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-16688176

RESUMEN

The neural crest is a stem population critical for development of the vertebrate craniofacial skeleton and peripheral ganglia. Neural crest cells originate along the border between the neural plate and epidermis, migrate extensively and generate numerous derivatives, including neurons and glia of the peripheral nervous system, melanocytes, bone and cartilage of the head skeleton. Impaired neural crest development is associated with human defects, including cleft palate. Classically, the neural crest has been thought to form by interactions at the border between neural and non-neural ectoderm or mesoderm, and defined factors such as bone morphogenetic proteins (BMPs) and Wnt proteins have been postulated as neural crest-inducers. Although competence to induce crest cells declines after stage 10 (ref. 14), little is known about when neural crest induction begins in vivo. Here we report that neural crest induction is underway during gastrulation and well before proper neural plate appearance. We show that a restricted region of chick epiblast (stage 3-4) is specified to generate neural crest cells when explanted under non-inducing conditions. This region expresses the transcription factor Pax7 by stage 4 + and later contributes to neural folds and migrating neural crest. In chicken embryos, Pax7 is required for neural crest formation in vivo, because blocking its translation inhibits expression of the neural crest markers Slug, Sox9, Sox10 and HNK-1. Our results indicate that neural crest specification initiates earlier than previously assumed, independently of mesodermal and neural tissues, and that Pax7 has a crucial function during neural crest development.


Asunto(s)
Diferenciación Celular , Gástrula/citología , Gástrula/metabolismo , Cresta Neural/citología , Cresta Neural/embriología , Factor de Transcripción PAX7/metabolismo , Animales , Embrión de Pollo , Mesodermo/citología , Mesodermo/metabolismo , Factor de Transcripción PAX7/genética , Células Madre/citología , Células Madre/metabolismo
14.
Bioessays ; 32(9): 808-17, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20730948

RESUMEN

Essentially we show recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral versus pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode-inductive surface ectoderm merged inside the oral cavity to form teeth (the 'outside-in' hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the 'inside-out' hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co-expressed genes defining a competent thickened epithelium and a collaborative neural crest-derived ectomesenchyme. Simply put, odontodes develop 'inside and out', wherever and whenever these co-expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non-model organisms.


Asunto(s)
Evolución Biológica , Odontogénesis/genética , Diente/anatomía & histología , Vertebrados/anatomía & histología , Animales , Ectodermo/embriología , Ectodermo/fisiología , Endodermo/embriología , Endodermo/fisiología , Epitelio/embriología , Epitelio/fisiología , Odontogénesis/fisiología , Diente/crecimiento & desarrollo , Diente/fisiología , Diente/ultraestructura , Vertebrados/genética
15.
Nat Neurosci ; 11(3): 269-76, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18278043

RESUMEN

Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest-placode interactions during trigeminal gangliogenesis.


Asunto(s)
Movimiento Celular/genética , Glicoproteínas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/embriología , Receptores Inmunológicos/metabolismo , Células Madre/metabolismo , Ganglio del Trigémino/embriología , Animales , Comunicación Celular/genética , Diferenciación Celular/genética , Embrión de Pollo , Pollos , Coturnix , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Proteínas del Tejido Nervioso/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Interferencia de ARN , Receptores Inmunológicos/genética , Células Madre/citología , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Proteínas Roundabout
16.
Dev Biol ; 340(2): 222-31, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19913005

RESUMEN

The transcription factor spalt4 is a key early-response gene in otic placode induction. Here, we characterize the cis-regulatory regions of spalt4 responsible for activation of its expression in the developing otic placode and report the isolation of a novel core enhancer. Identification and mutational analysis of putative transcription factor binding sites reveal that Pea3, a downstream effector of FGF signaling, and Pax2 directly activate spalt4 during ear development. Morpholino-mediated knock-down of each factor reduces or eliminates reporter expression. In contrast, combined over-expression of Pea3 and Pax2 drives ectopic reporter expression, suggesting that they function synergistically. These studies expand the gene regulatory network underlying early otic development by identifying direct inputs that mediate spalt4 expression.


Asunto(s)
Oído/embriología , Factor de Transcripción PAX2/metabolismo , Factores de Transcripción/metabolismo , Animales , Embrión de Pollo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factor de Transcripción PAX2/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética
17.
Dev Biol ; 348(1): 107-18, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20883685

RESUMEN

Glypicans are conserved cell surface heparan sulfate proteoglycans expressed in a spatiotemporally regulated manner in many developing tissues including the nervous system. Here, we show that Glypican-1 (GPC1) is expressed by trigeminal placode cells as they ingress and contribute to trigeminal sensory neurons in the chick embryo. Either expression of full-length or truncated GPC1 in vivo causes defects in trigeminal gangliogenesis in a manner that requires heparan sulfate side chains. This leads to either abnormal placodal differentiation or organization, respectively, with near complete loss of the ophthalmic (OpV) trigeminal ganglion in the most severe cases after overexpression of full-length GPC1. Interestingly, modulating GPC1 alters levels of endogenous Wnt signaling activity in the forming trigeminal ganglion, as indicated by Wnt reporter expression. Accordingly, GPC1 overexpression phenocopies Wnt inhibition in causing loss of OpV placodal neurons. Furthermore, increased Wnt activity rescues the effects of GPC1 overexpression. Taken together, these results suggest that appropriate levels of GPC1 are essential for proper regulation of canonical Wnt signaling during differentiation and organization of trigeminal placodal cells into ganglia.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glipicanos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Ganglio del Trigémino/embriología , Proteínas Wnt/fisiología , Animales , Embrión de Pollo , Glicosilfosfatidilinositoles/metabolismo , Glipicanos/deficiencia , Glipicanos/genética , Heparitina Sulfato/fisiología , Fenotipo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/fisiología , Células Receptoras Sensoriales/citología , Ganglio del Trigémino/ultraestructura , beta Catenina/química , beta Catenina/fisiología
18.
Dev Cell ; 11(4): 505-17, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17011490

RESUMEN

The sense organs of the vertebrate head comprise structures as varied as the eye, inner ear, and olfactory epithelium. In the early embryo, these assorted structures share a common developmental origin within the preplacodal region and acquire specific characteristics only later. Here we demonstrate a fundamental similarity in placodal precursors: in the chick all are specified as lens prior to acquiring features of specific sensory or neurogenic placodes. Lens specification becomes progressively restricted in the head ectoderm, initially by FGF and subsequently by signals derived from migrating neural crest cells. We show that FGF8 from the anterior neural ridge is both necessary and sufficient to promote olfactory fate in adjacent ectoderm. Our results reveal that placode precursors share a common ground state as lens and progressive restriction allows the full range of placodal derivatives to form.


Asunto(s)
Inducción Embrionaria , Factores de Crecimiento de Fibroblastos/metabolismo , Cristalino/embriología , Órganos de los Sentidos/embriología , Animales , Embrión de Pollo , Factores de Crecimiento de Fibroblastos/genética , Inmunohistoquímica , Hibridación in Situ , Cristalino/citología , Modelos Biológicos , Técnicas de Cultivo de Órganos
19.
Proc Natl Acad Sci U S A ; 105(51): 20083-8, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19104059

RESUMEN

The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial-mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development.


Asunto(s)
Redes Reguladoras de Genes , Cresta Neural/crecimiento & desarrollo , Petromyzon/embriología , Animales , Evolución Biológica , Cresta Neural/citología , Placa Neural , Biología de Sistemas/métodos , Factor de Transcripción AP-2
20.
Dev Biol ; 332(2): 189-95, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19500565

RESUMEN

Whereas neural crest cells are the source of the peripheral nervous system in the trunk of vertebrates, the "ectodermal placodes," together with neural crest, form the peripheral nervous system of the head. Cranial ectodermal placodes are thickenings in the ectoderm that subsequently ingress or invaginate to make important contributions to cranial ganglia, including epibranchial and trigeminal ganglia, and sensory structures, the ear, nose, lens, and adenohypophysis. Recent studies have uncovered a number of molecular signals mediating induction and differentiation of placodal cells. Here, we described recent advances in understanding the tissue interactions and signals underlying induction and neurogenesis of placodes, with emphasis on the trigeminal and epibranchial. Important roles of Fibroblast Growth Factors, Platelet Derived Growth Factors, Sonic Hedgehog, TGFbeta superfamily members, and Wnts are discussed.


Asunto(s)
Ectodermo/fisiología , Cabeza , Morfogénesis/fisiología , Cresta Neural/fisiología , Animales , Inducción Embrionaria/fisiología , Cabeza/anatomía & histología , Cabeza/embriología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Cresta Neural/citología , Neurogénesis , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA