Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Anal Bioanal Chem ; 415(5): 759-774, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36472636

RESUMEN

Isotope ratios of methylmercury (MeHg) within organisms can be used to identify sources of MeHg that have accumulated in food webs, but these isotopic compositions are masked in organisms at lower trophic levels by the presence of inorganic mercury (iHg). To facilitate measurement of MeHg isotope ratios in organisms, we developed a method of extracting and isolating MeHg from fish and aquatic invertebrates for compound-specific isotopic analysis involving nitric acid digestion, batch anion-exchange resin separation, and pre-concentration by purge and trap. Recovery of MeHg was quantified after each step in the procedure, and the average cumulative recovery of MeHg was 93.4 ± 2.9% (1 SD, n = 28) for biological reference materials and natural biota samples and 96.9 ± 1.8% (1 SD, n = 5) for aqueous MeHgCl standards. The amount of iHg impurities was also quantified after each step, and the average MeHg purity was 97.8 ± 4.3% (1 SD, n = 28) across all reference materials and natural biota samples after the final separation step. Measured MeHg isotopic compositions of reference materials agreed with literature values obtained using other MeHg separation techniques, and MeHg isotope ratios of aqueous standards, reference materials, and natural biota samples were reproducible. On average, the reproducibility associated with reference material process replicates (2 SD) was 0.10‰ for δ202MeHg and 0.04‰ for Δ199MeHg. This new method provides a streamlined, reliable technique that utilizes a single sample aliquot for MeHg concentration and isotopic analysis. This promotes a tight coupling between MeHg concentration, %MeHg, and Hg isotopic composition, which may be especially beneficial for studying complex food webs with multiple isotopically distinct sources of iHg and/or MeHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Compuestos de Metilmercurio/análisis , Ácido Nítrico/análisis , Isótopos de Mercurio/análisis , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Mercurio/análisis , Cadena Alimentaria , Isótopos/análisis , Digestión , Aniones/análisis
2.
J Phys Chem A ; 125(24): 5397-5405, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34114820

RESUMEN

Mercury (Hg) pollution is a global environmental problem. The abiotic formation of dimethylmercury (DMeHg) from monomethylmercury (MMeHg) may account for a large portion of DMeHg in oceans. Previous experimental work has shown that abiotic formation of DMeHg from MMeHg can be facilitated by reduced sulfur groups on sulfide mineral surfaces. In that work, a mechanism was proposed in which neighboring MMeHg moieties bound to sulfide sites on a mineral surface react through an SN2-type mechanism to form DMeHg and incorporate the remaining Hg atoms into the mineral surface. Here, we perform density functional theory calculations to explore the mechanisms of DMeHg formation on the 110 surface of a CdS(s) (hawleyite) nanoparticle. We show that coordination of MMeHg substituents to adjacent reduced sulfur groups protruding from the surface indeed facilitates DMeHg formation and that the reaction proceeds through direct transmethylation from one MMeHg substituent to another. Coordination of Hg by multiple S atoms provides a transition-state stabilization and activates a C-Hg bond for methyl transfer. In addition, solvation effects play an important role in the surface reconstruction of the nanoparticle and in decreasing the energetic barrier for DMeHg formation relative to the corresponding reaction in vacuo.

3.
J Comput Chem ; 41(2): 147-155, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31603259

RESUMEN

To assess the chemical reactivity, toxicity, and mobility of pollutants in the environment, knowledge of their species distributions is critical. Because their direct measurement is often infeasible, speciation modeling is widely adopted. Mercury (Hg) is a representative pollutant for which study of its speciation benefits from modeling. However, Hg speciation modeling is often hindered by a lack of reliable thermodynamic constants. Although computational chemistry (e.g., density functional theory [DFT]) can generate these constants, methods for directly coupling DFT and speciation modeling are not available. Here, we combine computational chemistry and continuum-scale modeling with curated online databases to ameliorate the problem of unreliable inputs to Hg speciation modeling. Our AQUA-MER databases and web server (https://aquamer.ornl.gov) provides direct speciation results by combining web-based interfaces to a speciation calculator, databases of thermodynamic constants, and a computational chemistry toolkit to estimate missing constants. Although Hg is presented as a concrete use case, AQUA-MER can also be readily applied to other elements. © 2019 Wiley Periodicals, Inc.

4.
Environ Sci Technol ; 54(21): 13527-13537, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32985864

RESUMEN

Dissolved organic matter (DOM) plays a significant role in the transport and transformation of pollutants in the aquatic environment. However, the experimental characterization of DOM has been limited mainly to bulk properties, and the molecular-level interactions among various components of DOM remain to be fully characterized. Here, we use molecular dynamics (MD) simulations to probe the structural properties of model DOM systems at atomic detail. The 200 ns simulations, validated by available experimental data, reveal processes and mechanisms by which chemical species (cations, peptides, lipids, lignin, carbohydrates, and some low-molecular-weight aliphatic and aromatic compounds) aggregate to form complex DOM. The DOM aggregates are dynamic, consisting of a hydrophobic core and amphiphilic exterior. The lipid tails and other hydrophobic fragments form the core, with hydrophilic and amphiphilic groups exposed to water, making DOM accessible to both polar and nonpolar species. Thus, the lipid component acts as a nucleator, whereas cations (especially Ca2+) connect the molecular fragments on the surface by coordinating with the O-containing functional groups of DOM. The structural details revealed here provide new insights including surface accessible atoms, overall assemblage, and interactions among the molecules of DOM for understanding the kinetics and mechanisms through which DOM interacts with metal and other contaminants.


Asunto(s)
Simulación de Dinámica Molecular , Contaminantes Químicos del Agua , Cationes , Metales , Compuestos Orgánicos , Agua , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 53(15): 8649-8663, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31260289

RESUMEN

Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes hgcAB and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing hgcA abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing hgcAB gene products. Hg-methylator abundance was also determined by quantitative hgcA qPCR amplification and metaproteomics for comparison to the above measurements. Samples from eight sites were examined covering a range of total Hg (HgT; 0.03-14 mg kg-1 dry wt. soil) and MeHg (0.05-27 µg kg-1 dry wt. soil) concentrations. In the metagenome and amplicon sequencing of hgcAB diversity, the Deltaproteobacteria were the dominant Hg-methylators while Firmicutes and methanogenic Archaea were typically ∼50% less abundant. This was consistent with metaproteomics estimates where the Deltaproteobacteria were steadily higher. The 16S rRNA gene pyrosequencing did not have sufficient resolution to identify hgcAB+ species. Metagenomic and hgcAB results were similar for Hg-methylator diversity and clade-specific qPCR-based approaches for hgcA are only appropriate when comparing the abundance of a particular clade across various samples. Weak correlations between Hg-methylating bacteria and soil Hg concentrations were observed for similar environmental samples, but overall total Hg and MeHg concentrations poorly correlated with Hg-cycling genes.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Ecosistema , Monitoreo del Ambiente , ARN Ribosómico 16S , Reproducibilidad de los Resultados
6.
J Environ Manage ; 245: 481-488, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170637

RESUMEN

Four commercially available sorbents (BioChar (BC), ThiolSAMMS® (TS), SediMite (SM), and Organoclay™ PM-199 (OC-199)) were tested for their ability to sorb methylmercury (MeHg) and MeHg complexed with dissolved organic matter (DOM). Testing sorption behavior with DOM is more representative of the environmental conditions and mercury speciation expected during in-situ remediation efforts. Isotherms were fit using a robust, iterative re-weighting scheme. This fitting approach improves upon the traditionally used indirect sorption method by removing the dependence between aqueous and solid phase concentrations in isotherm fitting. Developed isotherms show that without DOM, BC, TS, and SM adsorbed similar amounts of MeHg while OC-199 sorbed substantially less MeHg. Below an equilibrium concentration of 5.6 ng L-1 BC was the best performing sorbent, between 5.6 and 20.9 ng L-1 SM sorbed the most MeHg, and above an equilibrium concentration of 20.9 ng L-1 TS outperformed the other sorbents. BC and OC-199 showed indication of MeHg sorption saturation over the tested concentration range of 3.5-680 ng L-1. With DOM, SM outperformed the other sorbents at equilibrium concentrations less than 0.98 ng L-1 and TS was the superior MeHg:DOM sorbent at higher concentrations. MeHg:DOM sorption was controlled by DOM-sorbent interactions. DOM decreased MeHg sorption onto BC and SM whereas TS exhibited similar sorption with and without DOM. OC-199 had slightly higher MeHg uptake with DOM. East Fork Poplar Creek (EFPC), an industrially Hg contaminated site, was used as a case study example to build a relationship between aqueous and fish MeHg concentrations and subsequently compare the cost of sorbent materials required to meet regulatory objectives. For this case study, SM provided the most cost-effective sorbent option for in-situ remediation efforts to reduce aqueous MeHg concentrations.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales
7.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150503

RESUMEN

Neurotoxic methylmercury (MeHg) is produced by anaerobic Bacteria and Archaea possessing the genes hgcAB, but it is unknown how organic substrate and electron acceptor availability impacts the distribution and abundance of these organisms. We evaluated the impact of organic substrate amendments on mercury (Hg) methylation rates, microbial community structure, and the distribution of hgcAB+ microbes with sediments. Sediment slurries were amended with short-chain fatty acids, alcohols, or a polysaccharide. Minimal increases in MeHg were observed following lactate, ethanol, and methanol amendments, while a significant decrease (∼70%) was observed with cellobiose incubations. Postincubation, microbial diversity was assessed via 16S rRNA amplicon sequencing. The presence of hgcAB+ organisms was assessed with a broad-range degenerate PCR primer set for both genes, while the presence of microbes in each of the three dominant clades of methylators (Deltaproteobacteria, Firmicutes, and methanogenic Archaea) was measured with clade-specific degenerate hgcA quantitative PCR (qPCR) primer sets. The predominant microorganisms in unamended sediments consisted of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria Clade-specific qPCR identified hgcA+Deltaproteobacteria and Archaea in all sites but failed to detect hgcA+Firmicutes Cellobiose shifted the communities in all samples to ∼90% non-hgcAB-containing Firmicutes (mainly Bacillus spp. and Clostridium spp.). These results suggest that either expression of hgcAB is downregulated or, more likely given the lack of 16S rRNA gene presence after cellobiose incubation, Hg-methylating organisms are largely outcompeted by cellobiose degraders or degradation products of cellobiose. These results represent a step toward understanding and exploring simple methodologies for controlling MeHg production in the environment.IMPORTANCE Methylmercury (MeHg) is a neurotoxin produced by microorganisms that bioacummulates in the food web and poses a serious health risk to humans. Currently, the impact that organic substrate or electron acceptor availability has on the mercury (Hg)-methylating microorganisms is unclear. To study this, we set up microcosm experiments exposed to different organic substrates and electron acceptors and assayed for Hg methylation rates, for microbial community structure, and for distribution of Hg methylators. The sediment and groundwater was collected from East Fork Poplar Creek in Oak Ridge, TN. Amendment with cellobiose (a lignocellulosic degradation by-product) led to a drastic decrease in the Hg methylation rate compared to that in an unamended control, with an associated shift in the microbial community to mostly nonmethylating Firmicutes This, along with previous Hg-methylating microorganism identification methods, will be important for identifying strategies to control MeHg production and inform future remediation strategies.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Sedimentos Geológicos/microbiología , Mercurio/metabolismo , Compuestos de Metilmercurio/análisis , Microbiota/fisiología , Alcoholes/farmacología , Bacterias/efectos de los fármacos , Bacteroidetes/efectos de los fármacos , Bacteroidetes/metabolismo , Carbono/farmacología , Celobiosa/farmacología , Ácidos Grasos Volátiles/metabolismo , Firmicutes/efectos de los fármacos , Firmicutes/metabolismo , Metilación , Compuestos de Metilmercurio/metabolismo , Microbiota/efectos de los fármacos , Polisacáridos/farmacología , Proteobacteria/efectos de los fármacos , Proteobacteria/metabolismo , ARN Ribosómico 16S , Contaminantes Químicos del Agua
8.
Environ Sci Technol ; 52(4): 2063-2070, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29376334

RESUMEN

Laboratory measurements of the biologically mediated methylation of mercury (Hg) to the neurotoxin monomethylmercury (MMHg) often exhibit kinetics that are inconsistent with first-order kinetic models. Using time-resolved measurements of filter passing Hg and MMHg during methylation/demethylation assays, a multisite kinetic sorption model, and reanalyses of previous assays, we show that competing kinetic sorption reactions can lead to time-varying availability and apparent non-first-order kinetics in Hg methylation and MMHg demethylation. The new model employing a multisite kinetic sorption model for Hg and MMHg can describe the range of behaviors for time-resolved methylation/demethylation data reported in the literature including those that exhibit non-first-order kinetics. Additionally, we show that neglecting competing sorption processes can confound analyses of methylation/demethylation assays, resulting in rate constant estimates that are systematically biased low. Simulations of MMHg production and transport in a hypothetical periphyton biofilm bed illustrate the implications of our new model and demonstrate that methylmercury production may be significantly different than projected by single-rate first-order models.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Cinética , Metilación
9.
Environ Sci Technol ; 50(20): 10843-10850, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27617484

RESUMEN

Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from the industrially contaminated East Fork Poplar Creek, Tennessee (EFPC) were measured during 2014-2016 using stable Hg isotopic rate assays. 201HgII and MM202Hg were added to intact periphyton samples in ambient streamwater and the formation of MM201Hg and loss of MM202Hg were monitored over time and used to calculate first-order rate potentials for methylation and demethylation. The influences of location, temperature/season, light exposure and biofilm structure on methylation and demethylation potentials were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate potential (kd). In contrast, the within-site temperature-dependent difference in net methylation was driven by changes in the methylation rate potential (km). Samples incubated in the dark had lower net methylation due to lower km values than those incubated in the light. Disrupting the biofilm structure decreased km and resulted in lower net methylation. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 3.71-7.88 mg d-1 MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.


Asunto(s)
Biopelículas , Contaminantes Químicos del Agua , Mercurio , Metilación , Compuestos de Metilmercurio
10.
Appl Environ Microbiol ; 80(6): 1810-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24389927

RESUMEN

The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.


Asunto(s)
Biodiversidad , Hongos/clasificación , Hongos/metabolismo , Nitratos/metabolismo , Uranio/metabolismo , Microbiología del Agua , Contaminantes del Agua/metabolismo , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Hongos/genética , Hongos/aislamiento & purificación , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , Fuerza Protón-Motriz , ARN de Hongos/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
11.
Environ Sci Technol ; 48(7): 3666-74, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24588770

RESUMEN

Sediments were analyzed for total Hg concentration (THg) and isotopic composition from streams and rivers in the vicinity of the Y-12 National Security Complex (Y12) in Oak Ridge, TN (USA). In the stream directly draining Y12, where industrial releases of mercury (Hg) have been documented, high THg (3.26 to 60.1 µg/g) sediments had a distinct Hg isotopic composition (δ(202)Hg of 0.02 ± 0.15‰ and Δ(199)Hg of -0.07 ± 0.03‰; mean ± 1SD, n = 12) compared to sediments from relatively uncontaminated streams in the region (δ(202)Hg = -1.40 ± 0.06‰ and Δ(199)Hg of -0.26 ± 0.03‰; mean ± 1SD, n = 6). Additionally, several streams that are nearby but do not drain Y12 had sediments with intermediate THg (0.06 to 0.21 µg/g) and anomalous δ(202)Hg (as low as -5.07‰). We suggest that the low δ(202)Hg values in these sediments provide evidence for the contribution of an additional Hg source to sediments, possibly derived from atmospheric deposition. In sediments directly downstream of Y12 this third Hg source is not discernible, and the Hg isotopic composition can be largely explained by the mixing of low THg sediments with high THg sediments contaminated by Y12 discharges.


Asunto(s)
Sedimentos Geológicos/química , Mercurio/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Geografía , Isótopos de Mercurio , Tennessee
12.
Environ Pollut ; 346: 123573, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38365074

RESUMEN

The goal of this study was to explore the role of non-mercury (Hg) methylating taxa in mercury methylation and to identify potential links between elemental cycles and Hg methylation. Statistical approaches were utilized to investigate the microbial community and biochemical functions in relation to methylmercury (MeHg) concentrations in marine and freshwater sediments. Sediments were collected from the methylation zone (top 15 cm) in four Hg-contaminated sites. Both abiotic (e.g., sulfate, sulfide, iron, salinity, total organic matter, etc.) and biotic factors (e.g., hgcA, abundances of methylating and non-methylating taxa) were quantified. Random forest and stepwise regression were performed to assess whether non-methylating taxa were significantly associated with MeHg concentration. Co-occurrence and functional network analyses were constructed to explore associations between taxa by examining microbial community structure, composition, and biochemical functions across sites. Regression analysis showed that approximately 80% of the variability in sediment MeHg concentration was predicted by total mercury concentration, the abundances of Hg methylating taxa, and the abundances of the non-Hg methylating taxa. The co-occurrence networks identified Paludibacteraceae and Syntrophorhabdaceae as keystone non Hg methylating taxa in multiple sites, indicating the potential for syntrophic interactions with Hg methylators. Strong associations were also observed between methanogens and sulfate-reducing bacteria, which were likely symbiotic associations. The functional network results suggested that non-Hg methylating taxa play important roles in sulfur respiration, nitrogen respiration, and the carbon metabolism-related functions methylotrophy, methanotrophy, and chemoheterotrophy. Interestingly, keystone functions varied by site and did not involve carbon- and sulfur-related functions only. Our findings highlight associations between methylating and non-methylating taxa and sulfur, carbon, and nitrogen cycles in sediment methylation zones, with implications for predicting and understanding the impact of climate and land/sea use changes on Hg methylation.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Sedimentos Geológicos/química , Compuestos de Metilmercurio/análisis , Agua Dulce , Metilación , Carbono , Azufre , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Technol ; 47(11): 5787-93, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23641798

RESUMEN

Batch and column recirculation titration tests were performed with contaminated acidic sediments. A generic geochemical model was developed combining precipitation, cation exchange, and surface complexation reactions to describe the observed pH and metal ion concentrations in experiments with or without the presence of CO2. Experimental results showed a slow pH increase due to strong buffering by Al hydrolysis and precipitation and CO2 uptake. The cation concentrations generally decreased at higher pH than those observed in previous tests without CO2. Using amorphous Al(OH)3 and basaluminite precipitation reactions and a cation exchange selectivity coefficient K(Na\Al) of 0.3, the model approximately described the observed (1) pH titration curve, (2) Ca, Mg, and Mn concentration by cation exchange, and (3) U concentrations by surface complexation with Fe hydroxides at pH < 5 and with liebigite (Ca2UO2(CO3)3·10H2O) precipitation at pH > 5. The model indicated that the formation of aqueous carbonate complexes and competition with carbonate for surface sites could inhibit U and Ni adsorption and precipitation. Our results suggested that the uncertainty in basaluminite solubility is an important source of prediction uncertainty and ignoring labile solid phase Al underestimates the base requirement in titration of acidic sediments.


Asunto(s)
Aluminio/análisis , Sedimentos Geológicos/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/química , Adsorción , Aluminio/química , Calcio/química , Dióxido de Carbono/química , Carbonatos/química , Técnicas de Química Analítica/métodos , Sedimentos Geológicos/química , Agua Subterránea/análisis , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Magnesio/química , Manganeso/química , Modelos Químicos , Solubilidad , Tennessee , Uranio/química , Contaminantes Radiactivos del Agua/análisis
14.
Environ Sci Technol ; 47(7): 3209-17, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23397992

RESUMEN

We conducted microcosm tests and biogeochemical modeling to study U(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe(III), U(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100-120 days in the EVO microcosms versus 10-20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface.


Asunto(s)
Bacterias/metabolismo , Electrones , Emulsiones/metabolismo , Modelos Biológicos , Aceites de Plantas/metabolismo , Uranio/aislamiento & purificación , Acetatos/metabolismo , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Biomasa , Etanol/metabolismo , Hidrólisis , Hierro/metabolismo , Ácido Oléico/metabolismo , Oxidación-Reducción , Sulfatos/metabolismo
15.
Environ Sci Technol ; 47(7): 3218-25, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23438796

RESUMEN

We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.


Asunto(s)
Electrones , Emulsiones/metabolismo , Modelos Biológicos , Aceites de Plantas/metabolismo , Uranio/aislamiento & purificación , Acetatos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Biomasa , Ácidos Grasos/metabolismo , Fermentación , Glicerol/metabolismo , Hidrólisis , Hierro/metabolismo , Metano/biosíntesis , Nitratos/metabolismo , Oxidación-Reducción , Sulfatos/metabolismo
16.
Environ Sci Technol ; 47(12): 6440-8, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23697787

RESUMEN

A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.


Asunto(s)
Biodegradación Ambiental , Aceites de Plantas/química , Uranio/química , Verduras/química , Electrones , Hierro/química , Manganeso/química , Metano/química
17.
J Bacteriol ; 194(16): 4461-2, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22843592

RESUMEN

We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo , Desnitrificación , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Nitratos/metabolismo , Nitrógeno/metabolismo , Microbiología del Suelo , Xanthomonadaceae/aislamiento & purificación
18.
Appl Environ Microbiol ; 78(4): 1039-47, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22179233

RESUMEN

The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.


Asunto(s)
Biota , Agua Subterránea/microbiología , Contaminantes Radiactivos del Suelo/metabolismo , Xanthomonadaceae/clasificación , Xanthomonadaceae/aislamiento & purificación , ADN Bacteriano/genética , Desnitrificación , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Metagenoma , Metagenómica/métodos , Nitrógeno/análisis , Oxígeno/análisis , ARN Bacteriano/genética , Residuos Radiactivos , Xanthomonadaceae/metabolismo
19.
Int J Syst Evol Microbiol ; 62(Pt 10): 2457-2462, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22140175

RESUMEN

Bacterial strains 2APBS1(T) and 116-2 were isolated from the subsurface of a nuclear legacy waste site where the sediments are co-contaminated with large amounts of acids, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first member of the genus Rhodanobacter shown to be capable of complete denitrification. Cells of strain 2APBS1(T) and 116-2 were Gram-negative, non-spore-forming rods, 3-5 µm long and 0.25-0.5 µm in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth of 30 °C and pH 6.5; they were able to tolerate up to 2.0 % NaCl, although growth improved in its absence. Strains 2APBS1(T) and 116-2 contained fatty acid and quinone (ubiquinone-8; 100 %) profiles that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1(T) and 116-2 shared high 16S rRNA gene sequence similarity with Rhodanobacter thiooxydans LCS2(T) (>99 %), levels of DNA-DNA relatedness between these strains were substantially below the 70 % threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1(T) and 116-2 are considered to represent a single novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov. is proposed. The type strain is 2APBS1(T) ( = DSM 23569(T) = JCM 17641(T)).


Asunto(s)
Agua Subterránea/microbiología , Filogenia , Xanthomonadaceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Nitratos , ARN Ribosómico 16S/genética , Residuos Radiactivos , Análisis de Secuencia de ADN , Ubiquinona/análisis , Uranio , Contaminación Química del Agua , Contaminación Radiactiva del Agua , Xanthomonadaceae/genética , Xanthomonadaceae/aislamiento & purificación
20.
Environ Sci Process Impacts ; 24(8): 1195-1211, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35829655

RESUMEN

Filtered and particulate mercury (Hg) and methylmercury (MMHg), and associated water chemistry parameters, were evaluated bi-hourly for several 30 h periods during the summer and winter seasons at several distinct locations (downstream forested, midstream urban/suburban, upstream industrial) along a creek contaminated with high levels of inorganic Hg to determine if biogeochemical Hg and MMHg cycles respond to the daily photocycle. In summer particulate Hg and MMHg concentrations doubled overnight (excluding the upstream industrial site) concurrent with increases in turbidity and total suspended sediment; no such pattern was evident in winter. Seasonal and diel changes in the activity of macrobiota affecting the suspension of contaminated sediments are likely responsible for these patterns as other potential explanatory variables (e.g., instrument drift, pH, discharge) could not account for the range and timing of our observations. Diel patterns in filtered Hg (HgD) were significant only at locations and times of the year when channel shading was not present and daytime concentrations increased 22-89% above nighttime minima likely caused by direct and indirect photochemical reactions. Relationships between HgD and dissolved organic carbon (DOC) concentration or character were inconsistent between sites. Unlike HgD, there were significant diel patterns in filtered MMHg (MMHgD) at all sites and times of year, with summer concentrations peaking in mid to late afternoon while the timing differed in winter, with concentrations peaking after sunset. Daily variability in MMHgD concentration ranged between 25 and 75%. The results imply key controls on net methylation occur within the stream or on the stream bed and include factors such as small-scale temperature changes in the water column and photosynthetic activity of stream biofilm. With respect to stream monitoring, results from this study indicate (1) consistent timing in stream Hg and MMHg sampling is required for accurate assessment of long-term trends, (2) in situ measurements of turbidity can be used to quantify diel dynamics of both particulate Hg and MMHg concentrations, and (3) in situ fluorescing dissolved organic matter (FDOM), a potential proxy for DOC, was not capable of resolving diel dynamics of filtered Hg or MMHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Mercurio/análisis , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA