Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 154(Pt A): 59-68, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792440

RESUMEN

Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocondrias , Respuesta de Proteína Desplegada , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Respuesta de Proteína Desplegada/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos
2.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447582

RESUMEN

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Asunto(s)
Acetil-CoA Carboxilasa , Aminoácidos , Gluconeogénesis , Hígado , Malonil Coenzima A , Ratones Noqueados , Oxidación-Reducción , Animales , Malonil Coenzima A/metabolismo , Hígado/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ratones , Aminoácidos/metabolismo , Masculino , Piruvato Carboxilasa/metabolismo , Ciclo del Ácido Cítrico , Ácido Pirúvico/metabolismo , Ratones Endogámicos C57BL , Ayuno/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA