Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Immunol ; 44(10): 748-750, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652814

RESUMEN

Broadening immune responses through antigen spreading remains the 'Holy Grail' of cancer immunotherapy. A study by Ma and colleagues reveals that vaccine boosting of chimeric antigen receptor (CAR)-T cells in mice promotes endogenous immunity and elicits antigen spread to eliminate antigenically heterogenous solid tumors through a mechanism crucially dependent on interferon (IFN)γ.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Ratones , Animales , Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T
2.
PLoS Comput Biol ; 20(5): e1012106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38748755

RESUMEN

Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern. In this work, we analyze the structural and practical identifiability of a class of nested compartment models pervasively used in analysis of MRI data. We combine artificial and real data to study the role of noise in model parameter estimation. We observe that although all the models are structurally identifiable, practical identifiability strongly depends on the data characteristics. We analyze the impact of increasing data noise on parameter identifiability and show how the latter can be recovered with increased data quality. To complete the analysis, we show that the results do not depend on specific tissue characteristics or the type of enhancement patterns of contrast agent signal.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Medios de Contraste/química , Medios de Contraste/farmacocinética , Imagen por Resonancia Magnética/métodos , Humanos , Modelos Biológicos , Biología Computacional , Simulación por Computador
3.
Proc Natl Acad Sci U S A ; 119(33): e2112006119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939683

RESUMEN

IL13Rα2 is an attractive target due to its overexpression in a variety of cancers and rare expression in healthy tissue, motivating expansion of interleukin 13 (IL13)-based chimeric antigen receptor (CAR) T cell therapy from glioblastoma into systemic malignancies. IL13Rα1, the other binding partner of IL13, is ubiquitously expressed in healthy tissue, raising concerns about the therapeutic window of systemic administration. IL13 mutants with diminished binding affinity to IL13Rα1 were previously generated by structure-guided protein engineering. In this study, two such variants, termed C4 and D7, are characterized for their ability to mediate IL13Rα2-specific response as binding domains for CAR T cells. Despite IL13Rα1 and IL13Rα2 sharing similar binding interfaces on IL13, mutations to IL13 that decrease binding affinity for IL13Rα1 did not drastically change binding affinity for IL13Rα2. Micromolar affinity to IL13Rα1 was sufficient to pacify IL13-mutein CAR T cells in the presence of IL13Rα1-overexpressing cells in vitro. Interestingly, effector activity of D7 CAR T cells, but not C4 CAR T cells, was demonstrated when cocultured with IL13Rα1/IL4Rα-coexpressing cancer cells. While low-affinity interactions with IL13Rα1 did not result in observable toxicities in mice, in vivo biodistribution studies demonstrated that C4 and D7 CAR T cells were better able to traffic away from IL13Rα1+ lung tissue than were wild-type (WT) CAR T cells. These results demonstrate the utility of structure-guided engineering of ligand-based binding domains with appropriate selectivity while validating IL13-mutein CARs with improved selectivity for application to systemic IL13Rα2-expressing malignancies.


Asunto(s)
Inmunoterapia Adoptiva , Subunidad alfa2 del Receptor de Interleucina-13 , Interleucina-13 , Neoplasias , Animales , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva/métodos , Interleucina-13/genética , Interleucina-13/farmacocinética , Interleucina-13/uso terapéutico , Subunidad alfa2 del Receptor de Interleucina-13/antagonistas & inhibidores , Ratones , Neoplasias/terapia , Ingeniería de Proteínas , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer ; 22(1): 183, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974170

RESUMEN

Chimeric antigen receptor (CAR) NK and T cell therapy are promising immunotherapeutic approaches for the treatment of cancer. However, the efficacy of CAR NK/T cell therapy is often hindered by various factors, including the phenomenon of trogocytosis, which involves the bidirectional exchange of membrane fragments between cells. In this review, we explore the role of trogocytosis in CAR NK/T cell therapy and highlight potential strategies for its modulation to improve therapeutic efficacy. We provide an in-depth analysis of trogocytosis as it relates to the fate and function of NK and T cells, focusing on its effects on cell activation, cytotoxicity, and antigen presentation. We discuss how trogocytosis can mediate transient antigen loss on cancer cells, thereby negatively affecting the effector function of CAR NK/T cells. Additionally, we address the phenomenon of fratricide and trogocytosis-associated exhaustion, which can limit the persistence and effectiveness of CAR-expressing cells. Furthermore, we explore how trogocytosis can impact CAR NK/T cell functionality, including the acquisition of target molecules and the modulation of signaling pathways. To overcome the negative effects of trogocytosis on cellular immunotherapy, we propose innovative approaches to modulate trogocytosis and augment CAR NK/T cell therapy. These strategies encompass targeting trogocytosis-related molecules, engineering CAR NK/T cells to resist trogocytosis-induced exhaustion and leveraging trogocytosis to enhance the function of CAR-expressing cells. By overcoming the limitations imposed by trogocytosis, it may be possible to unleash the full potential of CAR NK/T therapy against cancer. The knowledge and strategies presented in this review will guide future research and development, leading to improved therapeutic outcomes in the field of immunotherapy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales , Trogocitosis , Inmunoterapia Adoptiva , Linfocitos T , Receptores Quiméricos de Antígenos/metabolismo , Neoplasias/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
5.
PLoS Comput Biol ; 18(1): e1009504, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081104

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy is potentially an effective targeted immunotherapy for glioblastoma, yet there is presently little known about the efficacy of CAR T-cell treatment when combined with the widely used anti-inflammatory and immunosuppressant glucocorticoid, dexamethasone. Here we present a mathematical model-based analysis of three patient-derived glioblastoma cell lines treated in vitro with CAR T-cells and dexamethasone. Advanced in vitro experimental cell killing assay technologies allow for highly resolved temporal dynamics of tumor cells treated with CAR T-cells and dexamethasone, making this a valuable model system for studying the rich dynamics of nonlinear biological processes with translational applications. We model the system as a nonautonomous, two-species predator-prey interaction of tumor cells and CAR T-cells, with explicit time-dependence in the clearance rate of dexamethasone. Using time as a bifurcation parameter, we show that (1) dexamethasone destabilizes coexistence equilibria between CAR T-cells and tumor cells in a dose-dependent manner and (2) as dexamethasone is cleared from the system, a stable coexistence equilibrium returns in the form of a Hopf bifurcation. With the model fit to experimental data, we demonstrate that high concentrations of dexamethasone antagonizes CAR T-cell efficacy by exhausting, or reducing the activity of CAR T-cells, and by promoting tumor cell growth. Finally, we identify a critical threshold in the ratio of CAR T-cell death to CAR T-cell proliferation rates that predicts eventual treatment success or failure that may be used to guide the dose and timing of CAR T-cell therapy in the presence of dexamethasone in patients.


Asunto(s)
Dexametasona , Glioblastoma/metabolismo , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/efectos de los fármacos , Adulto , Línea Celular Tumoral , Dexametasona/administración & dosificación , Dexametasona/farmacología , Humanos , Masculino , Persona de Mediana Edad
6.
Immunol Rev ; 290(1): 60-84, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31355493

RESUMEN

Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/patología , Ingeniería Genética , Humanos , Inmunidad , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Resultado del Tratamiento
7.
J Transl Med ; 20(1): 236, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606815

RESUMEN

Harnessing the effector mechanisms of the immune system to combat brain tumors with antigen specificity and memory has been in research and clinical testing for many years. Government grant mechanisms and non-profit organizations have supported many innovative projects and trials while biotech companies have invested in the development of needed tools, assays and novel clinical approaches. The National Brain Tumor Society and the Parker Institute for Cancer Immunotherapy partnered to host a workshop to share recent data, ideas and identify both hurdles and new opportunities for harnessing immunotherapy against pediatric and adult brain tumors. Adoptively transferred cell therapies have recently shown promising early clinical results. Local cell delivery to the brain, new antigen targets and innovative engineering approaches are poised for testing in a new generation of clinical trials. Although several such advances have been made, several obstacles remain for the successful application of immunotherapies for brain tumors, including the need for more representative animal models that can better foreshadow human trial outcomes. Tumor and tumor microenvironment biopsies with multiomic analysis are critical to understand mechanisms of response and patient stratification, yet brain tumors are especially challenging for such biopsy collection. These workshop proceedings and commentary shed light on the status of immunotherapy in pediatric and adult brain tumor patients, including current research as well as opportunities for improving future efforts to bring immunotherapy to the forefront in the management of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Inmunoterapia , Adulto , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Humanos , Factores Inmunológicos/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral
8.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328572

RESUMEN

Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Neoplasias/patología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T , Microambiente Tumoral
9.
Nano Lett ; 20(2): 860-867, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31647675

RESUMEN

Microfluidic intracellular delivery approaches based on plasma membrane poration have shown promise for addressing the limitations of conventional cellular engineering techniques in a wide range of applications in biology and medicine. However, the inherent stochasticity of the poration process in many of these approaches often results in a trade-off between delivery efficiency and cellular viability, thus potentially limiting their utility. Herein, we present a novel microfluidic device concept that mitigates this trade-off by providing opportunity for deterministic mechanoporation (DMP) of cells en masse. This is achieved by the impingement of each cell upon a single needle-like penetrator during aspiration-based capture, followed by diffusive influx of exogenous cargo through the resulting membrane pore, once the cells are released by reversal of flow. Massive parallelization enables high throughput operation, while single-site poration allows for delivery of small and large-molecule cargos in difficult-to-transfect cells with efficiencies and viabilities that exceed both conventional and emerging transfection techniques. As such, DMP shows promise for advancing cellular engineering practice in general and engineered cell product manufacturing in particular.


Asunto(s)
Supervivencia Celular/fisiología , Citoplasma/genética , Dispositivos Laboratorio en un Chip , Citoplasma/fisiología , Difusión , Electroporación/métodos , Humanos , Agujas , Transfección/métodos
10.
N Engl J Med ; 375(26): 2561-9, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-28029927

RESUMEN

A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)-engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes - infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362 .).


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Glioblastoma/terapia , Inmunoterapia Adoptiva , Recurrencia Local de Neoplasia/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Ingeniería Celular , Terapia Combinada , Humanos , Subunidad alfa2 del Receptor de Interleucina-13 , Masculino , Persona de Mediana Edad
11.
Mol Ther ; 26(1): 31-44, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29103912

RESUMEN

T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8+ T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.


Asunto(s)
Glioblastoma/inmunología , Glioblastoma/metabolismo , Inmunoterapia Adoptiva , Subunidad alfa2 del Receptor de Interleucina-13/antagonistas & inhibidores , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Anticuerpos Antineoplásicos/inmunología , Antígenos CD19/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Citotoxicidad Inmunológica , Dextroanfetamina/farmacología , Modelos Animales de Enfermedad , Orden Génico , Ingeniería Genética , Vectores Genéticos/genética , Glioblastoma/mortalidad , Glioblastoma/terapia , Humanos , Inmunoterapia Adoptiva/métodos , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Ratones , Receptores Quiméricos de Antígenos/química , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Blood ; 127(24): 2980-90, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27118452

RESUMEN

Myeloablative autologous hematopoietic stem cell transplantation (HSCT) is a mainstay of therapy for relapsed intermediate-grade B-cell non-Hodgkin lymphoma (NHL); however, relapse rates are high. In phase 1 studies designed to improve long-term remission rates, we administered adoptive T-cell immunotherapy after HSCT, using ex vivo-expanded autologous central memory-enriched T cells (TCM) transduced with lentivirus expressing CD19-specific chimeric antigen receptors (CARs). We present results from 2 safety/feasibility studies, NHL1 and NHL2, investigating different T-cell populations and CAR constructs. Engineered TCM-derived CD19 CAR T cells were infused 2 days after HSCT at doses of 25 to 200 × 10(6) in a single infusion. In NHL1, 8 patients safely received T-cell products engineered from enriched CD8(+) TCM subsets, expressing a first-generation CD19 CAR containing only the CD3ζ endodomain (CD19R:ζ). Four of 8 patients (50%; 95% confidence interval [CI]: 16-84%) were progression free at both 1 and 2 years. In NHL2, 8 patients safely received T-cell products engineered from enriched CD4(+) and CD8(+) TCM subsets and expressing a second-generation CD19 CAR containing the CD28 and CD3ζ endodomains (CD19R:28ζ). Six of 8 patients (75%; 95% CI: 35-97%) were progression free at 1 year. The CD4(+)/CD8(+) TCM-derived CD19 CAR T cells (NHL2) exhibited improvement in expansion; however, persistence was ≤28 days, similar to that seen by others using CD28 CARs. Neither cytokine release syndrome nor delayed hematopoietic engraftment was observed in either trial. These data demonstrate the safety and feasibility of CD19 CAR TCM therapy after HSCT. Trials were registered at www.clinicaltrials.gov as #NCT01318317 and #NCT01815749.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Memoria Inmunológica , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/terapia , Linfocitos T/trasplante , Adulto , Anciano , Antígenos CD19/metabolismo , Recuento de Células , Terapia Combinada/efectos adversos , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B/inmunología , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/terapia , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trasplante Autólogo , Adulto Joven
14.
Mol Ther ; 23(4): 757-68, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25366031

RESUMEN

The success of adoptive therapy using chimeric antigen receptor (CAR)-expressing T cells partly depends on optimal CAR design. CARs frequently incorporate a spacer/linker region based on the constant region of either IgG1 or IgG4 to connect extracellular ligand-binding with intracellular signaling domains. Here, we evaluated the potential for the IgG4-Fc linker to result in off-target interactions with Fc gamma receptors (FcγRs). As proof-of-principle, we focused on a CD19-specific scFv-IgG4-CD28-zeta CAR and found that, in contrast to CAR-negative cells, CAR+ T cells bound soluble FcγRs in vitro and did not engraft in NSG mice. We hypothesized that mutations to avoid FcγR binding would improve CAR+ T cell engraftment and antitumor efficacy. Thus, we generated CD19-specific CARs with IgG4-Fc spacers that had either been mutated at two sites (L235E; N297Q) within the CH2 region (CD19R(EQ)) or incorporated a CH2 deletion (CD19Rch2Δ). These mutations reduced binding to soluble FcγRs without altering the ability of the CAR to mediate antigen-specific lysis. Importantly, CD19R(EQ) and CD19Rch2Δ T cells exhibited improved persistence and more potent CD19-specific antilymphoma efficacy in NSG mice. Together, these studies suggest that optimal CAR function may require the elimination of cellular FcγR interactions to improve T cell persistence and antitumor responses.


Asunto(s)
Inmunoglobulina G/inmunología , Proteínas Mutantes Quiméricas/metabolismo , Mutación , Neoplasias Experimentales/terapia , Receptores de Antígenos/metabolismo , Receptores Fc/metabolismo , Linfocitos T/inmunología , Animales , Inmunoterapia , Ratones , Neoplasias Experimentales/inmunología , Unión Proteica , Receptores de Antígenos/genética
15.
Curr Opin Oncol ; 27(6): 466-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26352543

RESUMEN

PURPOSE OF REVIEW: Chimeric antigen receptors (CARs) are synthetic immunoreceptors, which can redirect T cells to selectively kill tumor cells, and as 'living drugs' have the potential to generate long-term antitumor immunity. Given their recent clinical successes for the treatment of refractory B-cell malignancies, there is a strong push toward advancing this immunotherapy to other hematological diseases and solid cancers. Here, we summarize the current state of the field, highlighting key variables for the optimal application of CAR T cells for cancer immunotherapy. RECENT FINDINGS: Advances in CAR T-cell therapy have highlighted intrinsic CAR design and T-cell manufacturing methods as critical components for maximal therapeutic success. Similarly, addressing the unique extrinsic challenges of each tumor type, including overcoming the immunosuppressive tumor microenvironment and tumor heterogeneity, and mitigating potential toxicity, will dominate the next wave of CAR T-cell development. SUMMARY: CAR T-cell therapeutic optimization, including intrinsic and extrinsic factors, is critical to developing effective CAR T-cell therapies for cancer. The excitement of CAR T-cell immunotherapy has just begun, and will continue with new insights revealed in laboratory research and in ongoing clinical investigations.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Linfocitos T/inmunología , Diferenciación Celular , Humanos , Neoplasias/inmunología , Microambiente Tumoral/inmunología
16.
Blood ; 122(18): 3138-48, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24030378

RESUMEN

Induction treatments for acute myeloid leukemia (AML) have remained largely unchanged for nearly 50 years, and AML remains a disease of poor prognosis. Allogeneic hematopoietic cell transplantation can achieve cures in select patients and highlights the susceptibility of AML to donor-derived immunotherapy. The interleukin-3 receptor α chain (CD123) has been identified as a potential immunotherapeutic target because it is overexpressed in AML compared with normal hematopoietic stem cells. Therefore, we developed 2 chimeric antigen receptors (CARs) containing a CD123-specific single-chain variable fragment, in combination with a CD28 costimulatory domain and CD3-ζ signaling domain, targeting different epitopes on CD123. CD123-CAR-redirected T cells mediated potent effector activity against CD123+ cell lines as well as primary AML patient samples. CD123 CAR T cells did not eliminate granulocyte/macrophage and erythroid colony formation in vitro. Additionally, T cells obtained from patients with active AML can be modified to express CD123 CARs and are able to lyse autologous AML blasts in vitro. Finally, CD123 CAR T cells exhibited antileukemic activity in vivo against a xenogeneic model of disseminated AML. These results suggest that CD123 CAR T cells are a promising immunotherapy for the treatment of high-risk AML.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide/inmunología , Receptores de Antígenos/inmunología , Anticuerpos de Cadena Única/inmunología , Linfocitos T/inmunología , Enfermedad Aguda , Animales , Línea Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Citocinas/inmunología , Citocinas/metabolismo , Citometría de Flujo , Células HEK293 , Humanos , Inmunoterapia Adoptiva/métodos , Subunidad alfa del Receptor de Interleucina-3/genética , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Células K562 , Leucemia Mieloide/patología , Leucemia Mieloide/terapia , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Linfocitos T/metabolismo , Linfocitos T/trasplante , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cells ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38994929

RESUMEN

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/radioterapia , Glioblastoma/patología , Animales , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Ratones , Microambiente Tumoral/inmunología , Humanos , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Linfocitos T/inmunología , Ratones Endogámicos C57BL , Inmunomodulación , Femenino
18.
Neuro Oncol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982561

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSION: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.

19.
Front Immunol ; 15: 1342625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449858

RESUMEN

Introduction: Despite aggressive standard-of-care therapy, including surgery, radiation, and chemotherapy, glioblastoma recurrence is almost inevitable and uniformly lethal. Activation of glioma-intrinsic Wnt/ß-catenin signaling is associated with a poor prognosis and the proliferation of glioma stem-like cells, leading to malignant transformation and tumor progression. Impressive results in a subset of cancers have been obtained using immunotherapies including anti-CTLA4, anti-PD-1, and anti-PD-L1 or chimeric antigen receptor (CAR) T cell therapies. However, the heterogeneity of tumors, low mutational burden, single antigen targeting, and associated antigen escape contribute to non-responsiveness and potential tumor recurrence despite these therapeutic efforts. In the current study, we determined the effects of the small molecule, highly specific Wnt/CBP (CREB Binding Protein)/ß-catenin antagonist ICG-001, on glioma tumor cells and the tumor microenvironment (TME)-including its effect on immune cell infiltration, blood vessel decompression, and metabolic changes. Methods: Using multiple glioma patient-derived xenografts cell lines and murine tumors (GL261, K-Luc), we demonstrated in vitro cytostatic effects and a switch from proliferation to differentiation after treatment with ICG-001. Results: In these glioma cell lines, we further demonstrated that ICG-001 downregulated the CBP/ß-catenin target gene Survivin/BIRC5-a hallmark of Wnt/CBP/ß-catenin inhibition. We found that in a syngeneic mouse model of glioma (K-luc), ICG-001 treatment enhanced tumor infiltration by CD3+ and CD8+ cells with increased expression of the vascular endothelial marker CD31 (PECAM-1). We also observed differential gene expression and induced immune cell infiltration in tumors pretreated with ICG-001 and then treated with CAR T cells as compared with single treatment groups or when ICG-001 treatment was administered after CAR T cell therapy. Discussion: We conclude that specific Wnt/CBP/ß-catenin antagonism results in pleotropic changes in the glioma TME, including glioma stem cell differentiation, modulation of the stroma, and immune cell activation and recruitment, thereby suggesting a possible role for enhancing immunotherapy in glioma patients.


Asunto(s)
Glioma , beta Catenina , Humanos , Animales , Ratones , Vía de Señalización Wnt , Recurrencia Local de Neoplasia , Inmunoterapia , Glioma/terapia , Microambiente Tumoral
20.
Nat Med ; 30(4): 1001-1012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454126

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy is an emerging strategy to improve treatment outcomes for recurrent high-grade glioma, a cancer that responds poorly to current therapies. Here we report a completed phase I trial evaluating IL-13Rα2-targeted CAR-T cells in 65 patients with recurrent high-grade glioma, the majority being recurrent glioblastoma (rGBM). Primary objectives were safety and feasibility, maximum tolerated dose/maximum feasible dose and a recommended phase 2 dose plan. Secondary objectives included overall survival, disease response, cytokine dynamics and tumor immune contexture biomarkers. This trial evolved to evaluate three routes of locoregional T cell administration (intratumoral (ICT), intraventricular (ICV) and dual ICT/ICV) and two manufacturing platforms, culminating in arm 5, which utilized dual ICT/ICV delivery and an optimized manufacturing process. Locoregional CAR-T cell administration was feasible and well tolerated, and as there were no dose-limiting toxicities across all arms, a maximum tolerated dose was not determined. Probable treatment-related grade 3+ toxicities were one grade 3 encephalopathy and one grade 3 ataxia. A clinical maximum feasible dose of 200 × 106 CAR-T cells per infusion cycle was achieved for arm 5; however, other arms either did not test or achieve this dose due to manufacturing feasibility. A recommended phase 2 dose will be refined in future studies based on data from this trial. Stable disease or better was achieved in 50% (29/58) of patients, with two partial responses, one complete response and a second complete response after additional CAR-T cycles off protocol. For rGBM, median overall survival for all patients was 7.7 months and for arm 5 was 10.2 months. Central nervous system increases in inflammatory cytokines, including IFNγ, CXCL9 and CXCL10, were associated with CAR-T cell administration and bioactivity. Pretreatment intratumoral CD3 T cell levels were positively associated with survival. These findings demonstrate that locoregional IL-13Rα2-targeted CAR-T therapy is safe with promising clinical activity in a subset of patients. ClinicalTrials.gov Identifier: NCT02208362 .


Asunto(s)
Glioblastoma , Glioma , Receptores Quiméricos de Antígenos , Humanos , Recurrencia Local de Neoplasia , Glioma/terapia , Linfocitos T , Glioblastoma/terapia , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA