RESUMEN
As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.
Asunto(s)
Genes Bacterianos , Operón , Biosíntesis de Proteínas , ARN de Transferencia/genética , Estrés Fisiológico/genética , Anabaena/genética , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Viabilidad Microbiana/genética , ARN de Transferencia/metabolismo , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that monomethylate resveratrol to yield pinostilbene have been described so far. Here, we report the engineering of a resveratrol OMT from Vitis vinifera (VvROMT), which has the highest catalytic efficiency in di-methylating resveratrol to yield pterostilbene. In the absence of a crystal structure, we constructed a three-dimensional protein model of VvROMT and identified four critical binding site residues by applying different in silico approaches. We performed point mutations in these positions generating W20A, F24A, F311A, and F318A variants, which greatly reduced resveratrol's enzymatic conversion. Then, we rationally designed eight variants through comparison of the binding site residues with other stilbene OMTs. We successfully modified the native substrate selectivity of VvROMT. Variant L117F/F311W showed the highest conversion to pinostilbene, and variant L117F presented an overall increase in enzymatic activity. Our results suggest that VvROMT has potential for the tailor-made production of stilbenes.
Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Resveratrol/metabolismo , Estilbenos/metabolismo , Vitis/enzimología , Ingeniería Metabólica , Metiltransferasas/genética , Modelos Moleculares , Filogenia , Proteínas de Plantas/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Discovery-based proteomics studies have an important role in the understanding of the biochemical processes that occur during grape berry ripening. The ripening process is relevant in determining grape berry quality. For a proteome analysis of grape berry ripening, Kambiranda et al. (2018) applied a label-free mass spectrometry-based quantitative approach. The authors reported the identification of proteins associated with the production flavor, aroma and ethylene production. Despite the valuable contribution of discovery-based proteomics studies, the picture is still incomplete. Future efforts in gaining proteome coverage would benefit the identification of proteins associated with grape berry quality traits.
Asunto(s)
Vitis , Etilenos , Frutas , Proteoma , Proteómica , Estados UnidosRESUMEN
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.
Asunto(s)
Genes Duplicados , Treonina-ARNt Ligasa/genética , Treonina-ARNt Ligasa/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Anabaena/enzimología , Anabaena/genética , Código Genético , Isoenzimas/genética , Isoenzimas/metabolismo , Multimerización de Proteína , Edición de ARN , Estrés Fisiológico/genética , Zinc/metabolismoRESUMEN
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans-resveratrol, trans-piceid, trans-piceatannol, trans-pterostilbene, and trans-ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis-piceid and trans-resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.
Asunto(s)
Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Estilbenos/química , Vitis/química , Fitoquímicos , Resveratrol , Vino/análisisRESUMEN
Grapevine stilbenes, particularly trans-resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of easily recoverable extracellular resveratrol when elicited with methylated cyclodextrins and methyl jasmonate. We devised this system as an interesting starting point of a metabolic engineering-based strategy to produce resveratrol derivatives using resveratrol-converting enzymes. Constitutive expression of either Vitis vinifera resveratrol O-methyltransferase (VvROMT) or human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) led to pterostilbene or piceatannol, respectively, after the engineered cell cultures were treated with the aforementioned elicitors. Functionality of both gene products was first assessed in planta by Nicotiana benthamiana agroinfiltration assays, in which tobacco cells transiently expressed stilbene synthase and VvROMT or HsCYP1B1. Grapevine cell cultures transformed with VvROMT produced pterostilbene, which was detected in both intra- and extracellular compartments, at a level of micrograms per litre. Grapevine cell cultures transformed with HsCYP1B1 produced about 20 mg/L culture of piceatannol, displaying a sevenfold increase in relation to wild-type cultures, and reaching an extracellular distribution of up to 45% of total production. The results obtained demonstrate the feasibility of this novel system for the bioproduction of natural and more bioactive resveratrol derivatives and suggest new ways for the improvement of production yields.
Asunto(s)
Ingeniería Metabólica , Plantas Modificadas Genéticamente , Estilbenos/metabolismo , Vitis/genética , Vitis/metabolismo , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Resveratrol , Estilbenos/química , Vitis/citologíaRESUMEN
BACKGROUND AND AIMS: Water deficit is the most serious environmental factor limiting agricultural production. In this work, the tolerance to water stress (WS) of transgenic plum lines harbouring transgenes encoding cytosolic antioxidant enzymes was studied, with the aim of achieving the durable resistance of commercial plum trees. METHODS: The acclimatization process was successful for two transgenic lines: line C3-1, co-expressing superoxide dismutase (two copies) and ascorbate peroxidase (one copy) transgenes simultaneously; and line J8-1, harbouring four copies of the cytosolic ascorbate peroxidase gene (cytapx). Plant water relations, chlorophyll fluorescence and the levels of antioxidant enzymes were analysed in both lines submitted to moderate (7 d) and severe (15 d) WS conditions. Additionally, in line J8-1, showing the best response in terms of stress tolerance, a proteomic analysis and determination of the relative gene expression of two stress-responsive genes were carried out. KEY RESULTS: Line J8-1 exhibited an enhanced stress tolerance that correlated with better photosynthetic performance and a tighter control of water-use efficiency. Furthermore, this WS tolerance also correlated with a higher enzymatic antioxidant capacity than wild-type (WT) and line C3-1 plum plants. On the other hand, line C3-1 displayed an intermediate phenotype between WT plants and line J8-1 in terms of WS tolerance. Under severe WS, the tolerance displayed by J8-1 plants could be due to an enhanced capacity to cope with drought-induced oxidative stress. Moreover, proteomic analysis revealed differences between WT and J8-1 plants, mainly in terms of the abundance of proteins related to carbohydrate metabolism, photosynthesis, antioxidant defences and protein fate. CONCLUSIONS: The transformation of plum plants with cytapx has a profound effect at the physiological, biochemical, proteomic and genetic levels, enhancing WS tolerance. Although further experiments under field conditions will be required, it is proposed that J8-1 plants would be an interesting Prunus rootstock for coping with climate change.
Asunto(s)
Ascorbato Peroxidasas/genética , Prunus domestica/fisiología , Aclimatación , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Clorofila , Citosol/enzimología , Sequías , Enzimas/genética , Enzimas/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Prunus domestica/genética , Prunus domestica/crecimiento & desarrollo , Estrés Fisiológico/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismoRESUMEN
RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were>2.0) but also of high yield (up to 720 µg on average [coefficient of variation=21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function.
Asunto(s)
Fraccionamiento Químico/métodos , Eriobotrya/química , ARN de Planta/aislamiento & purificación , Madera/química , Cetrimonio , Compuestos de Cetrimonio/química , Eriobotrya/genética , Eriobotrya/crecimiento & desarrollo , Genoma de Planta/genética , ARN de Planta/química , Madera/genética , Madera/crecimiento & desarrolloRESUMEN
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, several pharmacological activities and also bioavailability. The plant biosynthetic pathway of piceatannol is still poorly understood, which is a bottleneck for the development of both plant defence and bioproduction strategies. Cell cultures of Vitis vinifera cv. Gamay, when elicited with dimethyl-ß-cyclodextrin (MBCD) and methyl jasmonate (MeJA), lead to large increases in the accumulation of resveratrol, and after 120 h of elicitation, piceatannol is also detected due to the regiospecific hydroxylation of resveratrol. Therefore, an ortho-hydroxylase must participate in the biosynthesis of piceatannol. Herein, three possible types of resveratrol hydroxylation enzymatic reactions have been tested, specifically, a reaction catalyzed by an NADPH-dependent cytochrome, P450 hydroxylase, a 2-oxoglutarate-dependent dioxygenase and ortho-hydroxylation, similar to polyphenol oxidase (PPO) cresolase activity. Compared with P450 hydoxylase and the dioxygenase activities, PPO displayed the highest specific activity detected either in the crude extract, the particulate or the soluble fraction obtained from cell cultures elicited with MBCD and MeJA for 120 h. The overall yield of PPO activity present in the crude extract (107.42 EU) was distributed mostly in the soluble fraction (66.15 EU) rather than in the particulate fraction (3.71 EU). Thus, partial purification of the soluble fraction by precipitation with ammonium sulphate, dialysis and ion exchange chromatography was carried out. The soluble fraction precipitated with 80% ammonium sulphate and the chromatographic fractions also showed high levels of PPO activity, and the presence of the PPO protein was confirmed by Western blot and LC-MS/MS. In addition, a kinetic characterization of the cresolase activity of partially purified PPO was carried out for the resveratrol substrate, including Vmax and Km parameters. The Km value was 118.35 ± 49.84 µM, and the Vmax value was 2.18 ± 0.46 µmol min-1 mg-1.
RESUMEN
Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.
RESUMEN
Multiple reaction monitoring (MRM) is emerging as a promising technique for the detection and quantification of protein biomarkers in complex biological samples. Compared to Western blotting or enzyme assays, its high sensitivity, specificity, accuracy, assay speed, and sample throughput represent a clear advantage for being the approach of choice for the analysis of proteins. MRM assays are capable of detecting and quantifying proteolytic peptides differing in mass unique to particular proteins, that is, proteotypic peptides, through which different protein isoforms can be distinguished. We have focused on polyphenol oxidase (PPO), a plant conspicuous enzyme encoded by a multigenic family in loquat (Eriobotrya japonica Lindl.) and other related species. PPO is responsible for both the protection of plants from biotic stress as a feeding deterrent for herbivore insects and the enzymatic browning of fruits and vegetables. The latter makes fruit more attractive to seed dispersal agents but is also a major cause of important economic losses in agriculture and food industry. An adequate management of PPO at plant breeding level would maximize the benefits and minimize the disadvantages of this enzyme, but it would require a precise knowledge of the biological role played by each isoform in the plant. Thus, for the functional study of the PPOs, we have cloned and overexpressed fragments of three PPO isoforms from loquat to develop MRM-based methods for the quantification of each isoform. The method was developed using an ion trap instrument and validated in a QQQ instrument. It resulted in the selection of at least two peptides for each isoform that can be monitored by at least three transitions. A combination of SDS-PAGE and MRM lead to detect two out of three monitored isoforms in different gel bands corresponding to different processing stages of PPO. The method was applied to determine the amount of the PPO2 isoform in protein extracts from fruit samples using external calibrants.
Asunto(s)
Catecol Oxidasa/genética , Eriobotrya/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Fragmentos de Péptidos/aislamiento & purificación , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Calibración , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Cromatografía Liquida , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Eriobotrya/enzimología , Frutas/enzimología , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Fragmentos de Péptidos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components such as sugars, acids, flavors, anthocyanins, tannins, etc., accumulate in the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance in our understanding of berry development and ripening processes. RESULTS: We report the developmental analysis of Vitis vinifera cv. Muscat Hamburg berries at the protein level from fruit set to full ripening. An iTRAQ-based bottom-up proteomic approach followed by tandem mass spectrometry led to the identification and quantitation of 411 and 630 proteins in the green and ripening phases, respectively. Two key points in development relating to changes in protein level were detected: end of the first growth period (7 mm-to-15 mm) and onset of ripening (15 mm-to-V100, V100-to-110). A functional analysis was performed using the Blast2GO software based on the enrichment of GO terms during berry growth. CONCLUSIONS: The study of the proteome contributes to decipher the biological processes and metabolic pathways involved in the development and quality traits of fruit and its derived products. These findings lie mainly in metabolism and storage of sugars and malate, energy-related pathways such as respiration, photosynthesis and fermentation, and the synthesis of polyphenolics as major secondary metabolites in grape berry. In addition, some key steps in carbohydrate and malate metabolism have been identified in this study, i.e., PFP-PFK or SuSy-INV switches among others, which may influence the final sugar and acid balance in ripe fruit. In conclusion, some proteins not reported to date have been detected to be deregulated in specific tissues and developmental stages, leading to formulate new hypotheses on the metabolic processes underlying grape berry development. These results open up new lines to decipher the processes controlling grape berry development and ripening.
Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Marcaje Isotópico/métodos , Proteínas de Plantas/metabolismo , Proteómica/métodos , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Vías Biosintéticas , Ontología de Genes , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Péptidos/metabolismo , Proteoma/metabolismoRESUMEN
Here we present a study of the characterization and optimization of the production of trans-Resveratrol (t-R) in grape (Vitis vinifera cv. Gamay) cell cultures elicited with methyl jasmonate (MeJA) and dimethyl-ß-cyclodextrin (DIMEB). The aim of this study was to determine the influence of a number of factors of the grapevine cell culture on t-R production level in 250 mL shaken flasks that would enable the better control of this bioproduction system when it is upscaled to a 2 L stirred bioreactor. The factors included the optimal growth phase for elicitation, the concentration of elicitors and of biomass, the order of addition of elicitors, and the illumination regime and ageing of cells. We found out that the optimal biomass density for the production of t-R was 19% (w/v) with an optimal ratio of 0.5 g DIMEB/g biomass. The most productive concentrations of the elicitors tested were 50 mM DIMEB and 100 µM MeJA, reaching maximum values of 4.18 mg·mL-1 and 16.3 mg·g biomass-1 of t-R concentration and specific production, respectively. We found that the order of elicitor addition matters since, as compared with the simultaneous addition of both elicitors, the addition of MeJA 48 h before DIMEB results in ca. 40% less t-R production, whilst there is no significant difference when MeJA is added 48 h after DIMEB. Upon upscaling, the better conditions tested for t-R production were aeration at 1.7 vol/vol/min without agitation, 24 °C, and 30 g·L-1 sucrose, achieving production rates similar to those obtained in shaken flasks.
Asunto(s)
Estilbenos , Vitis , Resveratrol/farmacología , Estilbenos/farmacología , Técnicas de Cultivo de Célula/métodos , Células CultivadasRESUMEN
With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.
Asunto(s)
Rizoma , Sesquiterpenos , Proteómica , Sesquiterpenos/química , SueloRESUMEN
Recent advancements in plant biotechnology have highlighted the potential of hairy roots as a biotechnological platform, primarily due to their rapid growth and ability to produce specialized metabolites. This study aimed to delve deeper into hairy root development in C. asiatica and explore the optimization of genetic transformation for enhanced bioactive compound production. Previously established hairy root lines of C. asiatica were categorized based on their centelloside production capacity into HIGH, MID, or LOW groups. These lines were then subjected to a meticulous label-free proteomic analysis to identify and quantify proteins. Subsequent multivariate and protein network analyses were conducted to discern proteome differences and commonalities. Additionally, the quantification of rol gene copy numbers was undertaken using qPCR, followed by gene expression measurements. From the proteomic analysis, 213 proteins were identified. Distinct proteome differences, especially between the LOW line and other lines, were observed. Key proteins related to essential processes like photosynthesis and specialized metabolism were identified. Notably, potential biomarkers, such as the Tr-type G domain-containing protein and alcohol dehydrogenase, were found in the HIGH group. The presence of ornithine cyclodeaminase in the hairy roots emerged as a significant biomarker linked with centelloside production capacity lines, indicating successful Rhizobium-mediated genetic transformation. However, qPCR results showed an inconsistency with rol gene expression levels, with the HIGH line displaying notably higher expression, particularly of the rolD gene. The study unveiled the importance of ornithine cyclodeaminase as a traceable biomarker for centelloside production capacity. The strong correlation between this biomarker and the rolD gene emphasizes its potential role in optimizing genetic transformation processes in C. asiatica.
RESUMEN
Recent reviews pinpointed the enormous diversity of proteins found in living organisms, especially in higher eukaryotes. Protein diversity is driven through three main processes: first, at deoxyribonucleic acid (DNA) level (i.e. gene polymorphisms), second, at precursor messenger ribonucleic acid (pre-mRNA) or messenger ribonucleic acid (mRNA) level (i.e. alternative splicing, also termed as differential splicing) and, finally, at the protein level (i.e. PTM). Current proteomic technologies allow the identification, characterization and quantitation of up to several thousands of proteins in a single experiment. Nevertheless, the identification and characterization of protein species using these technologies are still hampered. Here, we review the use of the terms "protein species" and "protein isoform." We evidence that the appropriate selection of the database used for searches can impede or facilitate the identification of protein species. We also describe examples where protein identification search engines systematically fail in the attribution of protein species. We briefly review the characterization of protein species using proteomic technologies including gel-based, gel-free, bottom-up and top-down analysis and discuss their limitations. As an example, we discuss the theoretical characterization of the two human choline kinase species, α-1 and α-2, sharing the same catalytic activity but generated by alternative splicing on CHKA gene.
Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Proteómica/métodos , Animales , Humanos , Isoformas de Proteínas , Proteínas/genética , Análisis de Secuencia de Proteína/métodosRESUMEN
Grapevine (Vitis vinifera L.) is an economically important fruit crop. Quality-determining grape components, such as sugars, acids, flavours, anthocyanins, tannins, etc., are accumulated during the different grape berry development stages. Thus, correlating the proteomic profiles with the biochemical and physiological changes occurring in grape is of paramount importance to advance the understanding of the berry development and ripening processes. Here, the developmental analysis of V. vinifera cv. Muscat Hamburg berries is reported at protein level, from fruit set to full ripening. A top-down proteomic approach based on differential in-gel electrophoresis (DIGE) followed by tandem mass spectrometry led to identification and quantification of 156 and 61 differentially expressed proteins in green and ripening phases, respectively. Two key points in development, with respect to changes in protein level, were detected: end of green development and beginning of ripening. The profiles of carbohydrate metabolism enzymes were consistent with a net conversion of sucrose to malate during green development. Pyrophosphate-dependent phosphofructokinase is likely to play a key role to allow an unrestricted carbon flow. The well-known change of imported sucrose fate at the beginning of ripening from accumulation of organic acid (malate) to hexoses (glucose and fructose) was well correlated with a switch in abundance between sucrose synthase and soluble acid invertase. The role of the identified proteins is discussed in relation to their biological function, grape berry development, and to quality traits. Another DIGE experiment comparing fully ripe berries from two vintages showed very few spots changing, thus indicating that protein changes detected throughout development are specific.
Asunto(s)
Metabolismo de los Hidratos de Carbono , Ácidos Carboxílicos/metabolismo , Electroforesis en Gel Bidimensional/métodos , Frutas/crecimiento & desarrollo , Proteómica/métodos , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Análisis por Conglomerados , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Imagenología Tridimensional , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Estaciones del Año , Vitis/genéticaRESUMEN
In grapevine, trans-Resveratrol (tR) is produced as a defence mechanism against stress or infection. tR is also considered to be important for human health, which increases its interest to the scientific community. Transcriptomic analysis in grapevine cell cultures treated with the defence response elicitor methyl-ß-cyclodextrin (CD) revealed that both copies of PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE (PPCK) were down-regulated significantly. A role for PPCK in the defence response pathway has not been proposed previously. We therefore analysed the control of PPCK transcript levels in grapevine cell cultures and leaves elicited with CD. Moreover, phosphoenolpyruvate carboxylase (PPC), stilbene synthase (STS), and the transcription factors MYB14 and WRKY24, which are involved in the activation of STS transcription, were also analysed by RT-qPCR. The results revealed that under CD elicitation conditions PPCK down-regulation, increased stilbene production and loss of PPC activity occurs in both tissues. Moreover, STS transcripts were co-induced with MYB14 and WRKY24 in cell cultures and leaves. These genes have not previously been reported to respond to CD in grape leaves. Our findings thus support the hypothesis that PPCK is involved in diverting metabolism towards stilbene biosynthesis, both for in vitro cell culture and whole leaves. We thus provide new evidence for PEP being redirected between primary and secondary metabolism to support tR production and the stress response.
Asunto(s)
Regulación hacia Abajo , Resveratrol , Aciltransferasas , Proteínas Serina-Treonina QuinasasRESUMEN
Quantitation of changes in protein abundance is key to understanding the alterations that biological systems undergo and to discovering novel biomarkers. Currently, HPLC-MS/MS can be used to quantify changes in protein expression levels [Ong, S. E. and Mann, M., Nat. Chem. Biol. 2005, 1, 252-262]. Nevertheless, quantitative analysis of protein mixtures by HPLC-MS/MS is still hampered by the wide range of protein expression levels, the high dynamic range of protein concentrations and the lack of reliable quantitation algorithms [D'Ascenzo, M., et al. Brief. Funct. Genomic. Proteomic. 2008, 7, 127-135; Lin, W. T., et al., J. Proteome Res. 2006, 5, 2328-2338; Matthiesen, R., et al. J. Proteome Res. 2005, 4, 2338-2347; Yu, C. Y., et al. Nucleic Acids Res. 2007, 35, W707-W712]. In this context, we describe two different samples (4-protmix and 8-protmix) suitable for relative protein quantitation using iTRAQ. Using the 4-protmix, relative protein changes of up to 24-fold were measured. The 8-protmix allowed the quantitation of the relative protein changes in a mixture of proteins within the range of two orders of magnitude in concentration and ten-fold differences in relative abundance. We propose that the two samples are suited to test the iTRAQ quantitative proteomic workflow. We analyzed the iTRAQ samples with a LTQ Orbitrap using "higher energy collision-induced dissociation" fragmentation [Olsen, J. V., et al., Nat. Methods 2007, 4, 709-712] and quantified with Proteome Discoverer v.1.1 (Thermo Fisher Scientific). We believe that the presented protein mixtures will be useful to assess the performance of the iTRAQ-based quantitation proteomic strategy in any laboratory.
Asunto(s)
Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , AlgoritmosRESUMEN
Dimethyl labeling is a type of stable-isotope labeling suitable for creating isotopic variants of peptides and thus be utilized for quantitative proteomics experiments. Labeling is achieved through a reductive amination/alkylation reaction using the low-cost reagents formaldehyde and cyanoborohydride, resulting in dimethylation of free amine groups of Lys and N-termini. Availability of isotopomeric forms of these reagents allows for the generation of up to six different isotopic variants. Here we describe the application of dimethylation to create two isotopic variants, light and heavy, differing in 4 Da, to label the total tryptic digest peptides of cocoa pod extracted from healthy pods from cultivars susceptible and resistant to the fungal disease called "frosty pod" caused by Moniliophthora roreri.