Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes Chromosomes Cancer ; 61(10): 622-628, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545820

RESUMEN

There is growing body of evidence supporting the role of germline mutations in the pathogenesis of pediatric central nervous system (CNS) tumors, and the widespread use of next-generation sequencing (NGS) panels facilitates their detection. Variants of the MUTYH gene are increasingly recognized as suspected germline background of various extraintestinal malignancies, besides their well-characterized role in the polyposis syndrome associated with biallelic mutations. Using a multigene NGS panel (Illumina TruSight Oncology 500), we detected one H3 G34V- and one H3 K27M-mutant pediatric high-grade diffuse glioma, in association with c.1178G>A (p.G393D) and c.916C>T (p.R306C) MUTYH variants, respectively. Both MUTYH mutations were germline, heterozygous and inherited, according to the subsequent genetic testing of the patients and their first-degree relatives. In the H3 K27M-mutant glioma, amplifications affecting the 4q12 region were also detected, in association with KDR-PDGFRA, KIT-PDGFRA, and KDR-CHIC2 fusions, previously unreported in this entity. Among 47 other CNS tumors of various histological types tested with the same NGS panel in our institution, only one adult glioblastoma harbored MUTYH mutation. Together with a single previous report, our data raises the possibility of an association between germline MUTYH mutations and CNS malignancies, particularly in pediatric histone H3-mutant gliomas.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , ADN Glicosilasas , Glioma , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , ADN Glicosilasas/genética , Mutación de Línea Germinal , Glioma/genética , Glioma/patología , Humanos
2.
Magy Onkol ; 67(4): 315-320, 2023 Dec 18.
Artículo en Húngaro | MEDLINE | ID: mdl-38109510

RESUMEN

With the advancement of molecular oncology, numerous new opportunities are available for the effective and efficient treatment of patients diagnosed with childhood brain tumors. This includes gene panel analysis aiding personalized treatment used in clinical trials, and the application of targeted therapy independent of tissue type (tumor agnostic therapy). Most personalized therapies inhibit certain kinases. In our review, we present the modern pathological diagnosis of childhood brain tumors, as well as the complex intracellular regulation of signal transduction pathways important from the point of view of clinical practice, and we describe their further targets defined on the basis of pharmacological characteristics of the pathway, based on international and our own results. Despite common mutations affecting kinases, personalized therapy is not available in many types of tumors. Through the example of childhood brain tumors, we demonstrate the expected future therapeutic significance of tyrosine kinases.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Transducción de Señal/genética , Proteínas Tirosina Quinasas/genética , Biomarcadores de Tumor/genética , Genómica/métodos , Terapia Molecular Dirigida
3.
Sci Rep ; 13(1): 11770, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479763

RESUMEN

Cyclophosphamide, an oxazaphosphorine prodrug is frequently used in treatment of neuroblastoma, which is one of the most prevalent solid organ malignancies in infants and young children. Cytochrome P450 2B6 (CYP2B6) is the major catalyst and CYP2C19 is the minor enzyme in bioactivation and inactivation pathways of cyclophosphamide. CYP-mediated metabolism may contribute to the variable pharmacokinetics of cyclophosphamide and its toxic byproducts leading to insufficient response to the therapy and development of clinically significant side effects. The aim of the study was to reveal the contribution of pharmacogenetic variability in CYP2B6 and CYP2C19 to the treatment efficacy and cyclophosphamide-induced side effects in pediatric neuroblastoma patients under cyclophosphamide therapy (N = 50). Cyclophosphamide-induced hematologic toxicities were pivotal in all patients, whereas only moderate hepatorenal toxicity was developed. The patients' CYP2B6 metabolizer phenotypes were associated with the occurrence of lymphopenia, thrombocytopenia, and monocytopenia as well as of liver injury, but not with kidney or urinary bladder (hemorrhagic cystitis) toxicities. Furthermore, the patients' age (< 1.5 years, P = 0.03) and female gender (P ≤ 0.02), but not CYP2B6 or CYP2C19 metabolizer phenotypes appeared as significant prognostic factors in treatment outcomes. Our results may contribute to a better understanding of the impact of CYP2B6 variability on cyclophosphamide-induced side effects.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neuroblastoma , Humanos , Niño , Femenino , Preescolar , Lactante , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C19/genética , Ciclofosfamida/efectos adversos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA