Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Mol Life Sci ; 81(1): 90, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353833

RESUMEN

Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.


Asunto(s)
Vesículas Extracelulares , Melanoma , Humanos , Proteoma , Proteómica , Cromatografía en Gel
2.
J Proteome Res ; 23(6): 1926-1936, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691771

RESUMEN

Data-independent acquisition has seen breakthroughs that enable comprehensive proteome profiling using short gradients. As the proteome coverage continues to increase, the quality of the data generated becomes much more relevant. Using Spectronaut, we show that the default search parameters can be easily optimized to minimize the occurrence of false positives across different samples. Using an immunological infection model system to demonstrate the impact of adjusting search settings, we analyzed Mus musculus macrophages and compared their proteome to macrophages spiked withCandida albicans. This experimental system enabled the identification of "false positives" as Candida albicans peptides and proteins should not be present in the Mus musculus-only samples. We show that adjusting the search parameters reduced "false positive" identifications by 89% at the peptide and protein level, thereby considerably increasing the quality of the data. We also show that these optimized parameters incurred a moderate cost, only reducing the overall number of "true positive" identifications across each biological replicate by <6.7% at both the peptide and protein level. We believe the value of our updated search parameters extends beyond a two-organism analysis and would be of great value to any DIA experiment analyzing heterogeneous populations of cell types or tissues.


Asunto(s)
Candida albicans , Macrófagos , Proteoma , Proteómica , Animales , Ratones , Proteoma/análisis , Proteómica/métodos , Macrófagos/metabolismo , Macrófagos/inmunología , Exactitud de los Datos , Péptidos/análisis
3.
Mol Cell Proteomics ; 21(1): 100178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798331

RESUMEN

MS-based immunopeptidomics is maturing into an automatized and high-throughput technology, producing small- to large-scale datasets of clinically relevant major histocompatibility complex (MHC) class I-associated and class II-associated peptides. Consequently, the development of quality control (QC) and quality assurance systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semiautomated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition, and MHC specificity to greatly accelerate the "pass-fail" QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan, and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Programas Informáticos , Péptidos , Proteómica , Control de Calidad
4.
J Proteome Res ; 21(7): 1718-1735, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35605973

RESUMEN

The plasma proteome has the potential to enable a holistic analysis of the health state of an individual. However, plasma biomarker discovery is difficult due to its high dynamic range and variability. Here, we present a novel automated analytical approach for deep plasma profiling and applied it to a 180-sample cohort of human plasma from lung, breast, colorectal, pancreatic, and prostate cancers. Using a controlled quantitative experiment, we demonstrate a 257% increase in protein identification and a 263% increase in significantly differentially abundant proteins over neat plasma. In the cohort, we identified 2732 proteins. Using machine learning, we discovered biomarker candidates such as STAT3 in colorectal cancer and developed models that classify the diseased state. For pancreatic cancer, a separation by stage was achieved. Importantly, biomarker candidates came predominantly from the low abundance region, demonstrating the necessity to deeply profile because they would have been missed by shallow profiling.


Asunto(s)
Neoplasias Pancreáticas , Proteómica , Biomarcadores , Proteínas Sanguíneas/análisis , Humanos , Masculino , Proteoma/metabolismo
5.
Mol Cell Proteomics ; 19(2): 421-430, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31888964

RESUMEN

In bottom-up, label-free discovery proteomics, biological samples are acquired in a data-dependent (DDA) or data-independent (DIA) manner, with peptide signals recorded in an intact (MS1) and fragmented (MS2) form. While DDA has only the MS1 space for quantification, DIA contains both MS1 and MS2 at high quantitative quality. DIA profiles of complex biological matrices such as tissues or cells can contain quantitative interferences, and the interferences at the MS1 and the MS2 signals are often independent. When comparing biological conditions, the interferences can compromise the detection of differential peptide or protein abundance and lead to false positive or false negative conclusions.We hypothesized that the combined use of MS1 and MS2 quantitative signals could improve our ability to detect differentially abundant proteins. Therefore, we developed a statistical procedure incorporating both MS1 and MS2 quantitative information of DIA. We benchmarked the performance of the MS1-MS2-combined method to the individual use of MS1 or MS2 in DIA using four previously published controlled mixtures, as well as in two previously unpublished controlled mixtures. In the majority of the comparisons, the combined method outperformed the individual use of MS1 or MS2. This was particularly true for comparisons with low fold changes, few replicates, and situations where MS1 and MS2 were of similar quality. When applied to a previously unpublished investigation of lung cancer, the MS1-MS2-combined method increased the coverage of known activated pathways.Since recent technological developments continue to increase the quality of MS1 signals (e.g. using the BoxCar scan mode for Orbitrap instruments), the combination of the MS1 and MS2 information has a high potential for future statistical analysis of DIA data.


Asunto(s)
Proteómica/métodos , Animales , Caenorhabditis elegans , Cerebelo/metabolismo , Interpretación Estadística de Datos , Células HeLa , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Espectrometría de Masas , Ratones , Saccharomyces cerevisiae
6.
Mol Cell Proteomics ; 18(6): 1242-1254, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948622

RESUMEN

Comprehensive, high throughput analysis of the plasma proteome has the potential to enable holistic analysis of the health state of an individual. Based on our own experience and the evaluation of recent large-scale plasma mass spectrometry (MS) based proteomic studies, we identified two outstanding challenges: slow and delicate nano-flow liquid chromatography (LC) and irreproducibility of identification of data-dependent acquisition (DDA). We determined an optimal solution reducing these limitations with robust capillary-flow data-independent acquisition (DIA) MS. This platform can measure 31 plasma proteomes per day. Using this setup, we acquired a large-scale plasma study of the diet, obesity and genes dietary (DiOGenes) comprising 1508 samples. Proving the robustness, the complete acquisition was achieved on a single analytical column. Totally, 565 proteins (459 identified with two or more peptide sequences) were profiled with 74% data set completeness. On average 408 proteins (5246 peptides) were identified per acquisition (319 proteins in 90% of all acquisitions). The workflow reproducibility was assessed using 34 quality control pools acquired at regular intervals, resulting in 92% data set completeness with CVs for protein measurements of 10.9%.The profiles of 20 apolipoproteins could be profiled revealing distinct changes. The weight loss and weight maintenance resulted in sustained effects on low-grade inflammation, as well as steroid hormone and lipid metabolism, indicating beneficial effects. Comparison to other large-scale plasma weight loss studies demonstrated high robustness and quality of biomarker candidates identified. Tracking of nonenzymatic glycation indicated a delayed, slight reduction of glycation in the weight maintenance phase. Using stable-isotope-references, we could directly and absolutely quantify 60 proteins in the DIA.In conclusion, we present herein the first large-scale plasma DIA study and one of the largest clinical research proteomic studies to date. Application of this fast and robust workflow has great potential to advance biomarker discovery in plasma.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteómica , Reología , Pérdida de Peso , Adulto , Bases de Datos de Proteínas , Glicosilación , Humanos , Marcaje Isotópico , Proteoma/metabolismo , Estándares de Referencia
7.
J Proteome Res ; 19(1): 371-381, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31738065

RESUMEN

In mammalian cells, the lysosome is the main organelle for the degradation of macromolecules and the recycling of their building blocks. Correct lysosomal function is essential, and mutations in every known lysosomal hydrolase result in so-called lysosomal storage disorders, a group of rare and often fatal inherited diseases. Furthermore, it is becoming more and more apparent that lysosomes play also decisive roles in other diseases, such as cancer and common neurodegenerative disorders. This leads to an increasing interest in the proteomic analysis of lysosomes for which enrichment is a prerequisite. In this study, we compared the four most common strategies for the enrichment of lysosomes using data-independent acquisition. We performed centrifugation at 20,000 × g to generate an organelle-enriched pellet, two-step sucrose density gradient centrifugation, enrichment by superparamagnetic iron oxide nanoparticles (SPIONs), and immunoprecipitation using a 3xHA tagged version of the lysosomal membrane protein TMEM192. Our results show that SPIONs and TMEM192 immunoprecipitation outperform the other approaches with enrichment factors of up to 118-fold for certain proteins relative to whole cell lysates. Furthermore, we achieved an increase in identified lysosomal proteins and a higher reproducibility in protein intensities for label-free quantification in comparison to the other strategies.


Asunto(s)
Lisosomas/química , Proteínas/aislamiento & purificación , Proteómica/métodos , Centrifugación por Gradiente de Densidad , Células HEK293 , Humanos , Proteínas de Membrana de los Lisosomas/análisis , Nanopartículas Magnéticas de Óxido de Hierro/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas/análisis , Flujo de Trabajo
8.
J Proteome Res ; 18(3): 1340-1351, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726097

RESUMEN

Label-free quantification (LFQ) and isobaric labeling quantification (ILQ) are among the most popular protein quantification workflows in discovery proteomics. Here, we compared the TMT SPS/MS3 10-plex workflow to a label free single shot data-independent acquisition (DIA) workflow on a controlled sample set. The sample set consisted of ten samples derived from 10 biological replicates of mouse cerebelli spiked with the UPS2 protein standard in five different concentrations. For a fair comparison, we matched the instrument time for the two workflows. The LC-MS data were acquired at two facilities to assess interlaboratory reproducibility. Both methods resulted in a high proteome coverage (>5000 proteins) with low missing values on protein level (<2%). The TMT workflow led to 15-20% more identified proteins and a slightly better quantitative precision, whereas the quantitative accuracy was better for the DIA method. The quantitative performance was benchmarked by the number of true positives (UPS2 proteins) within the top 100 candidates. TMT and DIA showed a similar performance. The quantitative performance of the DIA data stayed in a similar range when searching the spectra against a fasta database directly, instead of using a project-specific library. Our experiments also demonstrated that both workflows are readily transferrable between facilities.


Asunto(s)
Cerebelo/metabolismo , Proteoma/genética , Proteómica/métodos , Animales , Cromatografía Liquida , Ratones , Proteómica/normas , Coloración y Etiquetado , Espectrometría de Masas en Tándem , Flujo de Trabajo
9.
Mol Cell Proteomics ; 16(12): 2296-2309, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29070702

RESUMEN

Comprehensive, reproducible and precise analysis of large sample cohorts is one of the key objectives of quantitative proteomics. Here, we present an implementation of data-independent acquisition using its parallel acquisition nature that surpasses the limitation of serial MS2 acquisition of data-dependent acquisition on a quadrupole ultra-high field Orbitrap mass spectrometer. In deep single shot data-independent acquisition, we identified and quantified 6,383 proteins in human cell lines using 2-or-more peptides/protein and over 7100 proteins when including the 717 proteins that were identified on the basis of a single peptide sequence. 7739 proteins were identified in mouse tissues using 2-or-more peptides/protein and 8121 when including the 382 proteins that were identified based on a single peptide sequence. Missing values for proteins were within 0.3 to 2.1% and median coefficients of variation of 4.7 to 6.2% among technical triplicates. In very complex mixtures, we could quantify 10,780 proteins and 12,192 proteins when including the 1412 proteins that were identified based on a single peptide sequence. Using this optimized DIA, we investigated large-protein networks before and after the critical period for whisker experience-induced synaptic strength in the murine somatosensory cortex 1-barrel field. This work shows that parallel mass spectrometry enables proteome profiling for discovery with high coverage, reproducibility, precision and scalability.


Asunto(s)
Péptidos/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Línea Celular , Cromatografía Liquida , Células HEK293 , Células HeLa , Humanos , Ratones , Péptidos/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína
10.
Mol Cell Proteomics ; 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28428241

RESUMEN

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.

11.
Proteomics ; 17(9)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28319648

RESUMEN

The use of data-independent acquisition (DIA) approaches for the reproducible and precise quantification of complex protein samples has increased in the last years. The protein information arising from DIA analysis is stored in digital protein maps (DIA maps) that can be interrogated in a targeted way by using ad hoc or publically available peptide spectral libraries generated on the same sample species as for the generation of the DIA maps. The restricted availability of certain difficult-to-obtain human tissues (i.e., brain) together with the caveats of using spectral libraries generated under variable experimental conditions limits the potential of DIA. Therefore, DIA workflows would benefit from high-quality and extended spectral libraries that could be generated without the need of using valuable samples for library production. We describe here two new targeted approaches, using either classical data-dependent acquisition repositories (not specifically built for DIA) or ad hoc mouse spectral libraries, which enable the profiling of human brain DIA data set. The comparison of our results to both the most extended publically available human spectral library and to a state-of-the-art untargeted method supports the use of these new strategies to improve future DIA profiling efforts.


Asunto(s)
Biología Computacional/métodos , Espectrometría de Masas/métodos , Corteza Prefrontal/metabolismo , Proteoma/análisis , Proteómica/métodos , Programas Informáticos , Médula Espinal/metabolismo , Animales , Humanos , Ratones , Biblioteca de Péptidos
12.
Mol Cell Proteomics ; 14(5): 1400-10, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25724911

RESUMEN

The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)(1)-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling.


Asunto(s)
Acetaminofén/farmacología , Analgésicos no Narcóticos/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Péptidos/análisis , Proteoma/análisis , Amidinotransferasas/análisis , Amidinotransferasas/genética , Amidinotransferasas/metabolismo , Amoníaco-Liasas/análisis , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Anexina A2/análisis , Anexina A2/genética , Anexina A2/metabolismo , Expresión Génica , Glutamato Formimidoiltransferasa/análisis , Glutamato Formimidoiltransferasa/genética , Glutamato Formimidoiltransferasa/metabolismo , Hepatocitos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Enzimas Multifuncionales , Proteínas Oncogénicas/análisis , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Peroxiredoxina VI/análisis , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo , Proteína Desglicasa DJ-1 , Proteolisis , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Técnicas de Cultivo de Tejidos , Tripsina/química , Canal Aniónico 2 Dependiente del Voltaje/análisis , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
13.
Proteomics ; 16(15-16): 2246-56, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27213465

RESUMEN

Targeted analysis of data-independent acquisition (DIA) data is a powerful mass spectrometric approach for comprehensive, reproducible and precise proteome quantitation. It requires a spectral library, which contains for all considered peptide precursor ions empirically determined fragment ion intensities and their predicted retention time (RT). RTs, however, are not comparable on an absolute scale, especially if heterogeneous measurements are combined. Here, we present a method for high-precision prediction of RT, which significantly improves the quality of targeted DIA analysis compared to in silico RT prediction and the state of the art indexed retention time (iRT) normalization approach. We describe a high-precision normalized RT algorithm, which is implemented in the Spectronaut software. We, furthermore, investigate the influence of nine different experimental factors, such as chromatographic mobile and stationary phase, on iRT precision. In summary, we show that using targeted analysis of DIA data with high-precision iRT significantly increases sensitivity and data quality. The iRT values are generally transferable across a wide range of experimental conditions. Best results, however, are achieved if library generation and analytical measurements are performed on the same system.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Algoritmos , Biología Computacional , Proteoma/análisis
14.
J Cell Sci ; 125(Pt 19): 4463-74, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22797918

RESUMEN

The chemokine receptor CCR7 is essential for lymphocyte and dendritic cell homing to secondary lymphoid organs. Owing to the ability to induce directional migration, CCR7 and its ligands CCL19 and CCL21 are pivotal for the regulation of the immune system. Here, we identify a novel function for receptor ubiquitylation in the regulation of the trafficking process of this G-protein-coupled seven transmembrane receptor. We discovered that CCR7 is ubiquitylated in a constitutive, ligand-independent manner and that receptor ubiquitylation regulates the basal trafficking of CCR7 in the absence of chemokine. Upon CCL19 binding, we show that internalized CCR7 recycles back to the plasma membrane via the trans-Golgi network. An ubiquitylation-deficient CCR7 mutant internalized normally after ligand binding, but inefficiently recycled in immune cells and was transiently retarded in the trans-Golgi network compartment of HEK293 transfectants. Finally, we demonstrate that the lack of CCR7 ubiquitylation profoundly impairs immune cell migration. Our results provide evidence for a novel function of receptor ubiquitylation in the regulation of CCR7 recycling and immune cell migration.


Asunto(s)
Movimiento Celular , Endocitosis , Receptores CCR7/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Quimiocinas/farmacología , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
15.
EMBO Rep ; 12(2): 142-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21252943

RESUMEN

The small ubiquitin-like modifier (SUMO) can undergo self-modification to form polymeric chains that have been implicated in cellular processes such as meiosis, genome maintenance and stress response. Investigations into the biological role of polymeric chains have been hampered by the absence of a protocol for the purification of proteins linked to SUMO chains. In this paper, we describe a rapid affinity purification procedure for the isolation of endogenous polySUMO-modified species that generates highly purified material suitable for individual protein studies and proteomic analysis. We use this approach to identify more than 300 putative polySUMO conjugates from cultured eukaryotic cells.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteoma/aislamiento & purificación , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Células HeLa , Calor , Humanos , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteoma/metabolismo , Estrés Fisiológico , Fracciones Subcelulares/metabolismo , Sumoilación
16.
Nature ; 450(7173): 1258-62, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18097415

RESUMEN

During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Animales , Aurora Quinasas , Caenorhabditis elegans , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimología , Femenino , Masculino , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Interferencia de ARN , Ubiquitina/metabolismo , Ubiquitinación , Proteína que Contiene Valosina , Xenopus laevis
17.
Methods Mol Biol ; 2554: 69-89, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36178621

RESUMEN

Metabolite-protein interactions regulate diverse cellular processes, prompting the development of methods to investigate the metabolite-protein interactome at a global scale. One such method is our previously developed structural proteomics approach, limited proteolysis-mass spectrometry (LiP-MS), which detects proteome-wide metabolite-protein and drug-protein interactions in native bacterial, yeast, and mammalian systems, and allows identification of binding sites without chemical modification. Here we describe a detailed experimental and analytical workflow for conducting a LiP-MS experiment to detect small molecule-protein interactions, either in a single-dose (LiP-SMap) or a multiple-dose (LiP-Quant) format. LiP-Quant analysis combines the peptide-level resolution of LiP-MS with a machine learning-based framework to prioritize true protein targets of a small molecule of interest. We provide an updated R script for LiP-Quant analysis via a GitHub repository accessible at https://github.com/RolandBruderer/MiMB-LiP-Quant .


Asunto(s)
Proteoma , Proteómica , Animales , Mamíferos/metabolismo , Espectrometría de Masas/métodos , Péptidos/metabolismo , Proteolisis , Proteoma/metabolismo , Proteómica/métodos
18.
Sci Rep ; 12(1): 3278, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228603

RESUMEN

Cancers are immunologically heterogeneous. A range of immunotherapies target abnormal tumor immunity via different mechanisms of actions (MOAs), particularly various tumor-infiltrate leukocytes (TILs). We modeled loss of function (LOF) in four common anti-PD-1 antibody-responsive syngeneic tumors, MC38, Hepa1-6, CT-26 and EMT-6, by systematical depleting a series of TIL lineages to explore the mechanisms of tumor immunity and treatment. CD8+-T-cells, CD4+-T-cells, Treg, NK cells and macrophages were individually depleted through either direct administration of anti-marker antibodies/reagents or using DTR (diphtheria toxin receptor) knock-in mice, for some syngeneic tumors, where specific subsets were depleted following diphtheria toxin (DT) administration. These LOF experiments revealed distinctive intrinsic tumor immunity and thus different MOAs in their responses to anti-PD-1 antibody among different syngeneic tumors. Specifically, the intrinsic tumor immunity and the associated anti-PD-1 MOA were predominately driven by CD8+ cytotoxic TILs (CTL) in all syngeneic tumors, excluding Hepa1-6 where CD4+ Teff TILs played a key role. TIL-Treg also played a critical role in supporting tumor growth in all four syngeneic models as well as M2-macrophages. Pathway analysis using pharmacodynamic readouts of immuno-genomics and proteomics on MC38 and Hepa1-6 also revealed defined, but distinctive, immune pathways of activation and suppression between the two, closely associated with the efficacy and consistent with TIL-pharmacodynamic readouts. Understanding tumor immune-pathogenesis and treatment MOAs in the different syngeneic animal models, not only assists the selection of the right model for evaluating new immunotherapy of a given MOA, but also can potentially help to understand the potential disease mechanisms and strategize optimal immune-therapies in patients.


Asunto(s)
Antineoplásicos , Inmunoterapia , Animales , Antineoplásicos/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Humanos , Linfocitos Infiltrantes de Tumor , Ratones , Linfocitos T Reguladores , Microambiente Tumoral
19.
STAR Protoc ; 3(4): 101725, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36166358

RESUMEN

Here, we describe an optimized protocol to analyze murine bone-marrow-derived macrophages using label-free data-independent acquisition (DIA) proteomics. We provide a complete step-by-step protocol describing sample preparation utilizing the S-Trap approach for on-column digestion and peptide purification. We then detail mass spectrometry data acquisition and approaches for data analysis. Single-shot DIA protocols achieve comparable proteomic depth with data-dependent MS approaches without the need for fractionation. This allows for better scaling for large sample numbers with high inter-experimental reproducibility. For complete details on the use and execution of this protocol, please refer to Ryan et al. (2022).


Asunto(s)
Médula Ósea , Proteómica , Animales , Ratones , Proteómica/métodos , Reproducibilidad de los Resultados , Péptidos , Espectrometría de Masas/métodos
20.
Nat Struct Mol Biol ; 29(10): 978-989, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224378

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein α-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Biomarcadores , Humanos , Proteoma/metabolismo , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA