RESUMEN
The triphosphates of antiviral 2',3'-dideoxynucleosides (ddNs) are the active chemical species that inhibit viral DNA synthesis. The inhibition involves incorporation of ddNMP into DNA and subsequent chain termination. A conceivable strategy for antiviral drugs is to employ nucleoside 5'-triphosphate mimics that can entirely bypass cellular phosphorylation. AZT 5'-alpha-R(P)-borano-beta,gamma-(difluoromethylene)triphosphate (5'-alphaB-betagammaCF(2)TP) has been identified as a potent inhibitor of HIV-1 reverse transcriptase (HIV-1 RT). This work was aimed at confirming that 5'-alphaB-betagammaCF(2)TP is a useful generic triphosphate moiety and can render antiviral ddNs with potent inhibitory effects on HIV-1 RT. Thus, 10 ddNs were converted to their 5'-alphaB-betagammaCF(2)TPs via a sequence (one-pot) of reactions: formation of an activated phosphite, formation of a cyclic triphosphate, boronation, and hydrolysis. Other synthetic routes were also explored. All ddN 5'-alphaB-betagammaCF(2)TPs tested exhibited essentially the same level of inhibition of HIV-1 RT as the corresponding ddNTPs. A conclusion can be made that 5'-alphaB-betagammaCF(2)TP is a generic and promising triphosphate mimic (P3M) concerning HIV-1 RT inhibition and serum stability. It is anticipated that use of 5'-alphaB-betagammaCF(2)TP as P3M moiety will lead to the discovery of a new class of anti-HIV agents.
Asunto(s)
Fármacos Anti-VIH/síntesis química , Compuestos de Boro/síntesis química , Desoxirribonucleótidos/síntesis química , Transcriptasa Inversa del VIH/metabolismo , Inhibidores de la Transcriptasa Inversa/síntesis química , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Compuestos de Boro/química , Compuestos de Boro/metabolismo , Bovinos , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Técnicas In Vitro , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/metabolismo , EstereoisomerismoRESUMEN
In search of active nucleoside 5'-triphosphate mimics, we have synthesized a series of AZT triphosphate mimics (AZT P3Ms) and evaluated their inhibitory effects on HIV-1 reverse transcriptase as well as their stability in fetal calf serum and in CEM cell extracts. Reaction of AZT with 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one, followed by treatment of the phosphite intermediate 2 with pyrophosphate analogues, yielded the cyclic triphosphate intermediates 4b-4f, which were subjected to boronation and subsequent hydrolysis to give AZT 5'-alpha-borano-beta,gamma-bridge-modified triphosphates 6b-6f in moderate to good yields. Reaction of the cyclic intermediate 4d with iodine, followed by treatment with a series of nucleophiles, afforded the AZT 5'-beta,gamma-difluoromethylene-gamma-substituted triphosphates (7b-7i). Several different types of AZT P3Ms containing alpha-P-thio (or dithio) and beta,gamma-difluoromethylene (13,14), alpha,beta-difluoromethylene and gamma-P-methyl(or phenyl) (15,16), and alpha-borano-beta,gamma-difluoromethylene and gamma-O-methyl/phenyl (11,12) were also synthesized. The effectiveness of the compounds as inhibitors of HIV-1 reverse transcriptase was determined using a fluorometric assay and a poly(A) homopolymer as a template. A number of AZT P3Ms exhibited very potent inhibition of HIV-1 reverse transcriptase. Modifications at the beta,gamma-bridge of triphosphate rendered the AZT P3Ms 6b-6f with varied activities (K(i) from 9.5 to >>500 nM) while modification at the alpha,beta-bridge of triphosphate led to weak AZT P3M inhibitors. The results imply that the AZT P3Ms were substrate inhibitors, as is AZT triphosphate. The most active compound, AZT 5'-alpha-R(p)()-borano-beta,gamma-(difluoromethylene)triphosphate (AZT 5'-alphaB-betagammaCF(2)TP) (6d-I), is as potent as AZT triphosphate with a K(i)() value of 9.5 nM and at least 20-fold more stable than AZT triphosphate in the serum and cell extracts. Therefore, for the first time, a highly active and stable nucleoside triphosphate mimic has been identified, which is potentially useful as a new type of antiviral drug. The promising triphosphate mimic, 5'-alpha-borano-beta,gamma-(difluoromethylene)triphosphate, is expected to be valuable to the discovery of nucleotide mimic antiviral drugs.
Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/síntesis química , Zidovudina/análogos & derivados , Estabilidad de Medicamentos , Humanos , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-ActividadRESUMEN
IMPDH inhibitors have potential antimicrobial, anticancer and immunomodulatory effects. Nucleoside inhibitors of IMPDH exert their inhibitory effects via nucleoside 5'-MPs. Conversion of nucleoside analogs to NMPs by cellular nucleoside kinases is not assured, and usually is inefficient. In order to bypass cellular phosphorylation, a series of azole nucleoside 5'-MP mimics (P1Ms) based on ribavirin, EICAR and bredinin were synthesized and screened against human and C. albicans IMP dehydrogenises. P1Ms 8, 16, 25, 28 and 29 demonstrated substantial IMPDH inhibition with Ki values in low micromolar range.