Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
2.
J Neurosci ; 42(14): 3037-3048, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35193928

RESUMEN

Chronic pain is sustained by a maladaptive form of neuronal plasticity occurring in all stations of the pain neuraxis, including cortical regions of the pain matrix. We report that chronic inflammatory pain induced by unilateral injection of complete Freund's adjuvant (CFA) in the hindpaw of male mice was associated with a progressive build-up of perineuronal nets (PNNs) in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), and reticular thalamic nucleus. In the SSC, the density of PNNs labeled by Wisteria floribunda agglutinin (WFA) was increased at both 3 and 7 d following CFA injection, but only after 7 d in the mPFC. The number of parvalbumin (PV)-positive interneurons enwrapped by WFA+/PNNs was also increased in all three brain regions of mice injected with CFA. Remarkably, PNN degradation induced by intracortical infusion of chondroitinase-ABC significantly reduced mechanical and thermal pain, and also reversed the increased frequency of IPSCs recorded in layer 5 pyramidal neurons of the contralateral SSC in CFA-injected mice. These findings suggest a possible relationship between cortical PNNs and nociceptive sensitization, and support the hypothesis that PNNs maintain their plasticity in the adult life and regulate cortical responses to sensory inputs.SIGNIFICANCE STATEMENT The brain extracellular matrix not only provides structural support, but also regulates synapse formation and function, and modulates neuronal excitability. We found that chronic inflammatory pain in mice enhances the density of perineuronal nets (PNNs) in the somatosensory cortex and medial prefrontal cortex. Remarkably, enzymatic degradation of PNNs in the somatosensory cortex caused analgesia and reversed alterations of inhibitory synaptic transmission associated with chronic pain. These findings disclose a novel mechanism of nociceptive sensitization and support a role for PNNs in mechanisms of neuronal plasticity in the adult brain.


Asunto(s)
Dolor Crónico , Corteza Somatosensorial , Animales , Dolor Crónico/inducido químicamente , Dolor Crónico/metabolismo , Matriz Extracelular/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Parvalbúminas/metabolismo , Corteza Somatosensorial/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35852558

RESUMEN

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Receptores de Glutamato Metabotrópico , Animales , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Calcio , Senescencia Celular , Hierro , Ratones Transgénicos , Neuroimagen , Fármacos Neuroprotectores/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Rayos X
4.
Eur J Neurosci ; 54(9): 7109-7124, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34655118

RESUMEN

Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.


Asunto(s)
Hipocampo , Oxígeno , Resiliencia Psicológica , Estrés Psicológico/psicología , Aeronaves , Animales , Ansiedad , Depresión , Ratones , Presión Parcial
5.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344747

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine expressed by different cell types and exerting multiple biological functions. It has been shown that MIF may be involved in several disorders, including neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), and Huntington disease (HD), that represent an unmet medical need. Therefore, further studies are needed to identify novel pathogenetic mechanisms that may translate into tailored therapeutic approaches so to improve patients' survival and quality of life. Here, we reviewed the preclinical and clinical studies investigating the role of MIF in ALS, PD, and HD. The emerging results suggest that MIF might play a dichotomic role in these disorders, exerting a protective action in ALS, a pathogenetic action in HD, and a yet undefined and debated role in PD. The better understanding of the role of MIF in these diseases could allow its use as a novel diagnostic and therapeutic tool for the monitoring and treatment of the patients and for eventual biomarker-driven therapeutic approaches.


Asunto(s)
Susceptibilidad a Enfermedades , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Animales , Biomarcadores , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Estudios Clínicos como Asunto , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/terapia
6.
Molecules ; 25(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936865

RESUMEN

Recent preclinical and clinical observations have offered relevant insights on the etiopathogenesis of late onset Alzheimer's disease (AD) and upregulated immunoinflammatory events have been described as underlying mechanisms involved in the development of AD. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by several cells of the innate and adaptive immune system, as well as non-immune cells. In the present review, we highlight experimental, genetic, and clinical studies on MIF in rodent models of AD and AD patients, and we discuss emerging therapeutic opportunities for tailored modulation of the activity of MIF, that may potentially be applied to AD patients. Dismantling the exact role of MIF and its receptors in AD may offer novel diagnostic and therapeutic opportunities in AD.


Asunto(s)
Enfermedad de Alzheimer , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Receptores Inmunológicos , Regulación hacia Arriba/inmunología , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Humanos , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/inmunología , Macrófagos , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Roedores
7.
Mol Pain ; 13: 1744806917697009, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28326943

RESUMEN

Background L-acetylcarnitine, a drug marketed for the treatment of chronic pain, causes analgesia by epigenetically up-regulating type-2 metabotropic glutamate (mGlu2) receptors in the spinal cord. Because the epigenetic mechanisms are typically long-lasting, we hypothesized that analgesia could outlast the duration of L-acetylcarnitine treatment in models of inflammatory and neuropathic pain. Results A seven-day treatment with L-acetylcarnitine (100 mg/kg, once a day, i.p.) produced an antiallodynic effect in the complete Freund adjuvant mouse model of chronic inflammatory pain. L-Acetylcarnitine-induced analgesia persisted for at least 14 days after drug withdrawal. In contrast, the analgesic effect of pregabalin, amitryptiline, ceftriaxone, and N-acetylcysteine disappeared seven days after drug withdrawal. L-acetylcarnitine treatment enhanced mGlu2/3 receptor protein levels in the dorsal region of the spinal cord. This effect also persisted for two weeks after drug withdrawal and was associated with increased levels of acetylated histone H3 bound to the Grm2 gene promoter in the dorsal root ganglia. A long-lasting analgesic effect of L-acetylcarnitine was also observed in mice subjected to chronic constriction injury of the sciatic nerve. In these animals, a 14-day treatment with pregabalin, amitryptiline, tramadol, or L-acetylcarnitine produced a significant antiallodynic effect, with pregabalin displaying the greatest efficacy. In mice treated with pregabalin, tramadol or L-acetylcarnitine the analgesic effect was still visible 15 days after the end of drug treatment. However, only in mice treated with L-acetylcarnitine analgesia persisted 37 days after drug withdrawal. This effect was associated with an increase in mGlu2/3 receptor protein levels in the dorsal horns of the spinal cord. Conclusions Our findings suggest that L-acetylcarnitine has the unique property to cause a long-lasting analgesic effect that might reduce relapses in patients suffering from chronic pain.


Asunto(s)
Acetilcarnitina/farmacología , Acetilcarnitina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Inflamación/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Amitriptilina/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Adyuvante de Freund/efectos adversos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Manejo del Dolor , Pregabalina/uso terapéutico , Receptores de Glutamato Metabotrópico/metabolismo , Factores de Tiempo , Tramadol/uso terapéutico
8.
Epilepsia ; 58(11): 1993-2001, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28913875

RESUMEN

OBJECTIVES: Thrombospondins, which are known to interact with the α2 δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). METHODS: We measured the transcripts of thrombospondin-1 and α2 δ subunit, and protein levels of α2 δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. RESULTS: Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. SIGNIFICANCE: These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs.


Asunto(s)
Canales de Calcio/genética , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Trombospondina 1/genética , Animales , Canales de Calcio/biosíntesis , Estudios de Cohortes , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Generalizada/metabolismo , Humanos , Masculino , Ratas , Ratas Wistar , Trombospondina 1/biosíntesis
9.
Neurochem Res ; 41(4): 924-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26700429

RESUMEN

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Animales , Bovinos , Glicina/análogos & derivados , Glicina/farmacología , Hidrólisis , Fosfatos de Inositol/biosíntesis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinoles/farmacología , Transducción de Señal
10.
J Neurosci ; 34(13): 4558-66, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672001

RESUMEN

Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/patología , Proteínas Portadoras/metabolismo , Hipocampo/fisiopatología , Depresión Sináptica a Largo Plazo/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hemicigoto , Hipocampo/patología , Proteínas de Andamiaje Homer , Inmunosupresores/farmacología , Técnicas In Vitro , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología
11.
Neurobiol Dis ; 74: 126-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25434487

RESUMEN

Enhancement of glial-derived neurotrophic factor (GDNF) is an established therapeutic target for amyotrophic lateral sclerosis (ALS). Activation of group II metabotropic glutamate (mGlu) receptors with the orthosteric agonist, LY379268, enhanced GDNF levels in cultured spinal cord astrocytes from wild-type mice and mGlu2(-/-) mice, but not in astrocytes from mGlu3(-/-) mice. LY379268 protected Sternberger monoclonal incorporated antibody-32 (SMI-32)(+) motor neurons against excitotoxic death in mixed cultures of spinal cord cells, and its action was abrogated by anti-GDNF antibodies. Acute systemic injection of LY379268 (0.5, 1 or 5mg/kg, i.p.) enhanced spinal cord GDNF levels in wild-type and mGlu2(-/-) mice, but not in mGlu3(-/-) mice. No tolerance developed to the GDNF-enhancing effect of LY379268 when the drug was continuously delivered for 28days by means of s.c. osmotic minipumps (0.5-5mg/day). Double fluorescent immunostaining showed a co-localization of GDNF with the astrocyte marker, GFAP, but not with the neuronal marker, Neuronal Nuclear Antigen (NeuN), or with SMI-32. Continuous infusion of LY379268 also enhanced the expression of the glutamate transporter GLT-1, in the spinal cord. These data laid the groundwork for the study of LY379268 in ALS mice. Continuous treatment with 1 or 5mg/kg/day with LY379268 had a beneficial effect on neurological disability in SOD1G93A mice. At day 40 of treatment, LY379268 enhanced spinal cord levels of GDNF and GLT-1, and rescued spinal cord motor neurons, as assessed by stereologic counting of SMI-32(+) cells. LY379268 had no significant effect on the mortality rate of SODG93A. These findings encourage the development of selective mGlu3 receptor agonists/enhancers as neuroprotective agents in ALS.


Asunto(s)
Aminoácidos/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Neuronas Motoras/efectos de los fármacos , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
13.
Pharmacol Res ; 99: 258-68, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26145279

RESUMEN

Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors.


Asunto(s)
Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Receptor de Serotonina 5-HT2C/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Estrés Fisiológico/efectos de los fármacos , Proteínas tau/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Transmisión Sináptica/efectos de los fármacos
14.
Schizophr Bull ; 50(2): 374-381, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37897399

RESUMEN

BACKGROUND AND HYPOTHESIS: Type-1 trace amine-associated receptors (TAAR1) modulate dopaminergic and glutamatergic neurotransmission and are targeted by novel antipsychotic drugs. We hypothesized that schizophrenia (SCZ) causes adaptive changes in TAAR1 expression in the prefrontal cortex. STUDY DESIGN: We measured TAAR1 mRNA and protein levels by quantitative PCR and immunoblotting in post-mortem prefrontal cortical samples obtained from 23 individuals affected by SCZ and 23 non-schizophrenic controls (CTRL). Data were correlated with a number of variables in both groups. STUDY RESULTS: TAAR1 mRNA levels were largely increased in the SCZ prefrontal cortex, and did not correlate with age, age at onset and duration of SCZ, or duration of antipsychotic treatment. For the analysis of TAAR1 protein levels, CTRL and SCZ were divided into 2 subgroups, distinguished by the extent of neuropathological burden. CTRL with low neuropathological burden (LNB) had lower TAAR1 protein levels than CTRL with high neuropathological burden (HNB), whereas no changes were found between LNB and HNB in the SCZ group. TAAR1 protein levels were lower in CTRL with LNB with respect to all SCZ samples or to SCZ samples with LNB. In the SCZ group, levels showed an inverse correlation with the duration of antipsychotic treatment and were higher in individuals treated with second-generation antipsychotics as compared with those treated with first-generation antipsychotics. CONCLUSIONS: The up-regulation of TAAR1 observed in the SCZ prefrontal cortex supports the development of TAAR1 agonists as new promising drugs in the treatment of SCZ.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/genética , Antipsicóticos/uso terapéutico , Regulación hacia Arriba , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Corteza Prefrontal/metabolismo , Dopamina/metabolismo , ARN Mensajero/metabolismo
15.
Schizophrenia (Heidelb) ; 10(1): 27, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413629

RESUMEN

Alterations in the kynurenine pathway of tryptophan metabolism have been implicated in the pathophysiology of schizophrenia. Here, we performed an in-depth analysis of all metabolites of the kynurenine pathway, i.e., tryptophan (TRY), kynurenic acid (KYNA), L-kynurenine (KYN), 3-hydroxykynurenine (3-HK), anthranylic acid (ANA), 3-hydroxyanthranylic acid (3-HANA), xanthurenic acid (XA) and quinolinic acid (QUINA), in postmortem samples of the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46, 9) of individuals affected by schizophrenia and non-schizophrenic controls. The analysis was carried out in the gray and white matter. Levels of KYN, 3-HK, ANA, and 3-HANA were significantly increased in both the gray and white matter of the DLPFC of individuals affected by schizophrenia, whereas levels of TRY, KYNA, and QUINA were increased exclusively in the white matter and remained unchanged in the gray matter. These increases in kynurenine metabolites did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication. These findings suggest that the two major branches of the kynurenine pathway, i.e., the transamination of KYN into KYNA, and hydroxylation of KYN into 3-HK are activated in the white matter of individuals affected by schizophrenia, perhaps as a result of neuroinflammation, and support the evidence that abnormalities of the white matter are consistenly associated with schizophrenia.

16.
eNeuro ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969501

RESUMEN

Cognitive dysfunction is associated with methamphetamine use disorder. Here, we used genetic and pharmacological approaches to examine the involvement of either mGlu2 or mGlu3 receptors in memory deficit induced by methamphetamine in mice. Methamphetamine treatment (1 mg/kg, i.p., once a day for 5 days followed by 7 days of withdrawal) caused an impaired performance in the novel object recognition (NOR) test in wild-type mice, but not in mGlu2-/- or mGlu3-/- mice. Memory deficit in wild-type mice challenged with methamphetamine was corrected by systemic treatment with selectively negative allosteric modulators of mGlu2 or mGlu3 receptors (compounds VU6001966 and VU0650786, respectively). Methamphetamine treatment in wild-type mice caused large increases in levels of mGlu2/3 receptors, the type-3 activator of G protein signaling (AGS3), Rab3A and the vesicular glutamate transporter, vGlut1 in the prefrontal cortex (PFC). Methamphetamine did not alter mGlu2/3-mediated inhibition of cAMP formation, but abolished the ability of postsynaptic mGlu3 receptors to boost mGlu5 receptor-mediated inositol phospholipid hydrolysis in PFC slices. Remarkably, activation of presynaptic mGlu2/3 receptors did not inhibit, but rather amplified depolarization-induced [3H]-D-aspartate release in synaptosomes prepared from the PFC of methamphetamine-treated mice.These findings demonstrate that exposure to methamphetamine causes changes in the expression and function of mGlu2 and mGlu3 receptors, which might alter excitatory synaptic transmission in the PFC, and raise the attractive possibility that selective inhibitors of mGlu2 or mGlu3 receptors (or both) may be used to improve cognitive dysfunction in individuals affected by methamphetamine use disorder.Significance Statement Targeting cognitive dysfunction may reduce methamphetamine craving and relapse in individuals who use methamphetamine. Using the novel object recognition (NOR) test for the study of recognition memory we found that cognitive impairment caused by methamphetamine in mice was corrected by genetic deletion or selective pharmacological blockade of either mGlu2 or mGlu3 receptors, two metabotropic glutamate receptor subtypes that control synaptic activity by restraining glutamate release. Interestingly, mGlu2/3 receptors were up-regulated in the prefrontal cortex of methamphetamine-treated mice, and showed an inverse mode of operation by enhancing depolarization-induced glutamate release. These findings suggest that selective mGlu2 or mGlu3 receptor antagonists may improve cognitive function in individuals affected by methamphetamine use disorder.

17.
Pharmacol Res ; 67(1): 1-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23073075

RESUMEN

Fingolimod (FTY720), a novel drug approved for the treatment of relapsing-remitting multiple sclerosis, activates different sphingosine-1-phosphate receptor (S1PR) subtypes. Its primary mechanism of action is to reduce the egress of T lymphocytes from secondary lymphoid organs, thus restraining neuroinflammation and autoimmunity. However, recent evidence suggests that the action of FTY720 involves S1PRs expressed by cells resident in the CNS, including neurons. Here, we examined the effect of FTY720, its active metabolite, FTY720-P, and sphingosine-1-phosphate (S1P) on neuronal viability using a classical in vitro model of excitotoxic neuronal death. Mixed cultures of mouse cortical cells were challenged with toxic concentrations of N-methyl-d-aspartate (NMDA) for 10 min, and neuronal death was assessed 20 h later. FTY720, FTY720-P, and S1P were all neuroprotective when applied 18-20 h prior to the NMDA pulse. Neuroprotection was attenuated by pertussis toxin, and inhibited by the selective type-1 S1PR (S1P1R) antagonist, W146, and by inhibitors of the mitogen associated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PtdIns-3-K) pathways. Both FTY720 and FTY720-P retained their protective activity in pure cultures of mouse or rat cortical neurons. These data offer the first direct demonstration that FTY720 and its active metabolite protect neurons against excitotoxic death.


Asunto(s)
Inmunosupresores/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Organofosfatos/farmacología , Glicoles de Propileno/farmacología , Esfingosina/análogos & derivados , Animales , Astrocitos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Células Cultivadas , Femenino , Clorhidrato de Fingolimod , Lisofosfolípidos/farmacología , Ratones , Ratas , Esfingosina/farmacología
18.
Neuropharmacology ; 238: 109642, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392820

RESUMEN

The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of Fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cß and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.


Asunto(s)
Síndrome de Angelman , Trastorno Autístico , Síndrome del Cromosoma X Frágil , Ratones , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Hidrólisis , Modelos Animales de Enfermedad , Ratones Noqueados , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Portadoras , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
19.
Mol Pharmacol ; 81(1): 12-20, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21984253

RESUMEN

We examined the interaction between estrogen receptors (ERs) and type 1 metabotropic glutamate receptors (mGlu1 receptors) in mechanisms of neurodegeneration/neuroprotection using mixed cultures of cortical cells challenged with ß-amyloid peptide. Both receptors were present in neurons, whereas only ERα but not mGlu1 receptors were found in astrocytes. Addition of 17ß-estradiol (17ßE2) protected cultured neurons against amyloid toxicity, and its action was mimicked by the selective ERα agonist, 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) as well as by a cell-impermeable bovine serum albumin conjugate of 17ßE2. The selective ERß agonist, diarylpropionitrile (DPN), was only slightly neuroprotective. The mGlu1/5 receptor agonist, 3,5-dihydroxyphenylglycine (DHPG), was also neuroprotective against amyloid toxicity, and its action was abolished by the mGlu1 receptor antagonist, (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone (JNJ 16259685). Neuroprotection by 17ßΕ2 or PPT (but not DPN) and DHPG was less than additive, suggesting that ERα and mGlu1 receptors activate the same pathway of cell survival. More important, neuroprotection by 17ßΕ2 was abolished not only by the ER antagonist fulvestrant (ICI 182,780) but also by JNJ 16259685, and neuroprotection by DHPG was abolished by ICI 182,780. ERα and mGlu1 receptors were also interdependent in activating the phosphatidylinositol-3-kinase pathway, and pharmacological blockade of this pathway abolished neuroprotection by 17ßE2, DHPG, or their combination. These data provide the first evidence that ERα and mGlu1 receptors critically interact in promoting neuroprotection, information that should be taken into account when the impact of estrogen on neurodegeneration associated with central nervous system disorders is examined.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Corteza Cerebral/fisiología , Receptor alfa de Estrógeno/fisiología , Neuronas/fisiología , Fármacos Neuroprotectores , Receptores de Glutamato Metabotrópico/fisiología , Animales , Muerte Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Estradiol/análogos & derivados , Estradiol/metabolismo , Estradiol/farmacología , Moduladores de los Receptores de Estrógeno/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Fulvestrant , Humanos , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/metabolismo , Metoxihidroxifenilglicol/farmacología , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley
20.
Mol Pain ; 8: 77, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23088864

RESUMEN

BACKGROUND: Pharmacological activation of type-2 metabotropic glutamate receptors (mGlu2 receptors) causes analgesia in experimental models of inflammatory and neuropathic pain. Presynaptic mGlu2 receptors are activated by the glutamate released from astrocytes by means of the cystine/glutamate antiporter (System x(c)(-) or Sx(c)(-)). We examined the analgesic activity of the Sx(c)(-) activator, N-acetyl-cysteine (NAC), in mice developing inflammatory or neuropathic pain. RESULTS: A single injection of NAC (100 mg/kg, i.p.) reduced nocifensive behavior in the second phase of the formalin test. NAC-induced analgesia was abrogated by the Sxc- inhibitor, sulphasalazine (8 mg/kg, i.p.) or by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.). NAC still caused analgesia in mGlu3(-/-) mice, but was inactive in mGlu2(-/-) mice. In wild-type mice, NAC retained the analgesic activity in the formalin test when injected daily for 7 days, indicating the lack of tolerance. Both single and repeated injections of NAC also caused analgesia in the complete Freund's adjuvant (CFA) model of chronic inflammatory pain, and, again, analgesia was abolished by LY341495. Data obtained in mice developing neuropathic pain in response to chronic constriction injury (CCI) of the sciatic nerve were divergent. In this model, a single injection of NAC caused analgesia that was reversed by LY341495, whereas repeated injections of NAC were ineffective. Thus, tolerance to NAC-induced analgesia developed in the CCI model, but not in models of inflammatory pain. The CFA and CCI models differed with respect to the expression levels of xCT (the catalytic subunit of Sx(c)(-)) and activator of G-protein signaling type-3 (AGS3) in the dorsal portion of the lumbar spinal cord. CFA-treated mice showed no change in either protein, whereas CCI mice showed an ipislateral reduction in xCT levels and a bilateral increase in AGS3 levels in the spinal cord. CONCLUSIONS: These data demonstrate that pharmacological activation of Sxc- causes analgesia by reinforcing the endogenous activation of mGlu2 receptors. NAC has an excellent profile of safety and tolerability when clinically used as a mucolytic agent or in the management of acetaminophen overdose. Thus, our data encourage the use of NAC for the experimental treatment of inflammatory pain in humans.


Asunto(s)
Acetilcisteína/uso terapéutico , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA