Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(27): e2123516119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759668

RESUMEN

Sterkfontein is the most prolific single source of Australopithecus fossils, the vast majority of which were recovered from Member 4, a cave breccia now exposed by erosion and weathering at the landscape surface. A few other Australopithecus fossils, including the StW 573 skeleton, come from subterranean deposits [T. C. Partridge et al., Science 300, 607-612 (2003); R. J. Clarke, K. Kuman, J. Hum. Evol. 134, 102634 (2019)]. Here, we report a cosmogenic nuclide isochron burial date of 3.41 ± 0.11 million years (My) within the lower middle part of Member 4, and simple burial dates of 3.49 ± 0.19 My in the upper middle part of Member 4 and 3.61 ± 0.09 My in Jacovec Cavern. Together with a previously published isochron burial date of 3.67 ± 0.16 My for StW 573 [D. E. Granger et al., Nature 522, 85-88 (2015)], these results place nearly the entire Australopithecus assemblage at Sterkfontein in the mid-Pliocene, contemporaneous with Australopithecus afarensis in East Africa. Our ages for the fossil-bearing breccia in Member 4 are considerably older than the previous ages of ca. 2.1 to 2.6 My interpreted from flowstones associated with the same deposit. We show that these previously dated flowstones are stratigraphically intrusive within Member 4 and that they therefore underestimate the true age of the fossils.


Asunto(s)
Evolución Biológica , Hominidae , Animales , Cuevas , Radiación Cósmica , Fósiles , Esqueleto , Sudáfrica
2.
Proc Natl Acad Sci U S A ; 119(28): e2111212119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787044

RESUMEN

The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel-dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.


Asunto(s)
Hominidae , Diente , Animales , Fósiles , Filogenia , Diente/diagnóstico por imagen , Microtomografía por Rayos X
3.
J Hum Evol ; 156: 103000, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34020297

RESUMEN

The Early Pleistocene site of Swartkrans in South Africa's Cradle of Humankind World Heritage Site has been significant for our understanding of the evolution of both early Homo and Paranthropus, as well as the earliest archaeology of southern Africa. Previous attempts to improve a faunal age estimate of the earliest deposit, Member 1, had produced results obtained with uranium-lead dating (U-Pb) on flowstones and cosmogenic burial dating of quartz, which placed the entire member in the range of >1.7/1.8 Ma and <2.3 Ma. In 2014, two simple burial dates for the Lower Bank, the earliest unit within Member 1, narrowed its age to between ca. 1.8 Ma and 2.2 Ma. A new dating program using the isochron method for burial dating has established an absolute age of 2.22 ± 0.09 Ma for a large portion of the Lower Bank, which can now be identified as containing the earliest Oldowan stone tools and fossils of Paranthropus robustus in South Africa. This date agrees within one sigma with the U-Pb age of 2.25 ± 0.08 Ma previously published for the flowstone underlying the Lower Bank and confirms a relatively rapid rate of accumulation for a large portion of the talus.


Asunto(s)
Arqueología , Cuevas , Fósiles , Hominidae , Comportamiento del Uso de la Herramienta , Animales , Historia Antigua , Sudáfrica
4.
J Hum Evol ; 158: 102983, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33888323

RESUMEN

The ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness. Preservation of clavicles and scapulae, including essentially complete right-side elements, offers opportunities to assess morphological and functional aspects of a nearly complete Australopithecus pectoral girdle. Here we describe the StW 573 pectoral girdle and offer quantitative comparisons to those of extant hominoids and selected homininans. The StW 573 pectoral girdle combines features intermediate between those of humans and other apes: a long and curved clavicle, suggesting a relatively dorsally positioned scapula; an enlarged and uniquely proportioned supraspinous fossa; a relatively cranially oriented glenoid fossa; and ape-like reinforcement of the axillary margin by a stout ventral bar. StW 573 scapulae are as follows: smaller than those of some homininans (i.e., KSD-VP-1/1 and KNM-ER 47000A), larger than others (i.e., A.L. 288-1, Sts 7, and MH2), and most similar in size to another australopith from Sterkfontein, StW 431. Moreover, StW 573 and StW 431 exhibit similar structural features along their axillary margins and inferior angles. As the StW 573 pectoral girdle (e.g., scapular configuration) has a greater affinity to that of apes-Gorilla in particular-rather than modern humans, we suggest that the StW 573 morphological pattern appears to reflect adaptations to arboreal behaviors, especially those with the hand positioned above the head, more than human-like manipulatory capabilities. When compared with less complete pectoral girdles from middle/late Miocene apes and that of the penecontemporaneous KSD-VP-1/1 (Australopithecus afarensis), and mindful of consensus views on the adaptiveness of arboreal positional behaviors soliciting abducted glenohumeral joints in early Pliocene taxa, we propose that the StW 573 pectoral girdle is a reasonable model for hypothesizing pectoral girdle configuration of the crown hominin last common ancestor.


Asunto(s)
Evolución Biológica , Fósiles , Hominidae/anatomía & histología , Hombro/anatomía & histología , Animales , Femenino , Gorilla gorilla/anatomía & histología , Humanos , Masculino , Escápula/anatomía & histología
5.
Nature ; 522(7554): 85-8, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25830884

RESUMEN

The cave infills at Sterkfontein contain one of the richest assemblages of Australopithecus fossils in the world, including the nearly complete skeleton StW 573 ('Little Foot') in its lower section, as well as early stone tools in higher sections. However, the chronology of the site remains controversial owing to the complex history of cave infilling. Much of the existing chronology based on uranium-lead dating and palaeomagnetic stratigraphy has recently been called into question by the recognition that dated flowstones fill cavities formed within previously cemented breccias and therefore do not form a stratigraphic sequence. Earlier dating with cosmogenic nuclides suffered a high degree of uncertainty and has been questioned on grounds of sediment reworking. Here we use isochron burial dating with cosmogenic aluminium-26 and beryllium-10 to show that the breccia containing StW 573 did not undergo significant reworking, and that it was deposited 3.67 ± 0.16 million years ago, far earlier than the 2.2 million year flowstones found within it. The skeleton is thus coeval with early Australopithecus afarensis in eastern Africa. We also date the earliest stone tools at Sterkfontein to 2.18 ± 0.21 million years ago, placing them in the Oldowan at a time similar to that found elsewhere in South Africa at Swartkans and Wonderwerk.


Asunto(s)
Fósiles , Hominidae , Paleontología/métodos , Datación Radiométrica/métodos , Esqueleto , África Oriental , Aluminio , Animales , Berilio , Entierro , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Hominidae/anatomía & histología , Hominidae/clasificación , Radioisótopos , Cráneo/anatomía & histología , Sudáfrica , Factores de Tiempo , Comportamiento del Uso de la Herramienta
7.
Folia Primatol (Basel) ; 92(5-6): 243-275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34583353

RESUMEN

The StW 573 skeleton of Australopithecus prometheus from Sterkfontein Member 2 is some 93% complete and thus by far the most complete member of that genus yet found. Firmly dated at 3.67 Ma, it is one of the earliest specimens of its genus. A crucial aspect of interpretation of locomotor behaviour from fossil remains is an understanding of the palaeoenvironment in which the individual lived and the manner in which it would have used it. While the value of this ecomorphological approach is largely accepted, it has not been widely used as a stable framework on which to build evolutionary biomechanical interpretations. Here, we collate the available evidence on StW 573's anatomy in order, as far as currently possible, to reconstruct what might have been this individual's realized and potential niche. We explore the concept of a common Australopithecus "bauplan" by comparing the morphology and ecological context of StW 573 to that of paenocontemporaneous australopiths including Australopithecus anamensis and KSD-VP-1/1 Australopithecus afarensis. Each was probably substantially arboreal and woodland-dwelling, relying substantially on arboreal resources. We use a hypothesis-driven approach, tested by: virtual experiments, in the case of extinct species; biomechanical analyses of the locomotor behaviour of living great ape species; and analogical experiments with human subjects. From these, we conclude that the habitual locomotor mode of all australopiths was upright bipedalism, whether on the ground or on branches. Some later australopiths such as Australopithecus sediba undoubtedly became more terrestrial, allowing sacrifice of arboreal stability in favour of manual dexterity. Indeed, modern humans retain arboreal climbing skills but have further sacrificed arboreal effectiveness for enhanced ability to sustain striding terrestrial bipedalism over much greater distances. We compare StW 573's locomotor adaptations to those of living great apes and protohominins, and agree with those earlier observers who suggest that the common panin-hominin last common ancestor was postcranially more like Gorilla than Pan.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fósiles , Gorilla gorilla
8.
J Hum Evol ; 133: 167-197, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358179

RESUMEN

Due to its completeness, the A.L. 288-1 ('Lucy') skeleton has long served as the archetypal bipedal Australopithecus. However, there remains considerable debate about its limb proportions. There are three competing, but not necessarily mutually exclusive, explanations for the high humerofemoral index of A.L. 288-1: (1) a retention of proportions from an Ardipithecus-like chimp/human last common ancestor (CLCA); (2) indication of some degree of climbing ability; (3) allometry. Recent discoveries of other partial skeletons of Australopithecus, such as those of Australopithecus sediba (MH1 and MH2) and Australopithecus afarensis (KSD-VP-1/1 and DIK-1/1), have provided new opportunities to test hypotheses of early hominin body size and limb proportions. Yet, no early hominin is as complete (>90%), as is the ∼3.67 Ma 'Little Foot' (StW 573) skeleton from Sterkfontein Member 2. Here, we provide the first descriptions of its upper and lower long limb bones, as well as a comparative context of its limb proportions. We found that StW 573 possesses absolutely longer limb lengths than A.L. 288-1, but both skeletons show similar limb proportions. This finding seems to argue against a purely allometric explanation for A.L. 288-1 limb proportions. In fact, our multivariate allometric analysis suggests that limb lengths of Australopithecus, as represented by StW 573 and A.L. 288-1, exhibit a significantly different (p < 0.001) allometric pattern than that which typifies modern humans and African apes. Like some previous analyses, our results also suggest that hominin limb evolution occurred in two stages with: first, a modest increase in lower limb length and a concurrent shortening of the antebrachium between Ardipithecus and Australopithecus, followed by a considerable lengthening of the lower limb along with a decrease of both upper limb elements occurring between Australopithecus and Homo sapiens.


Asunto(s)
Huesos del Brazo/anatomía & histología , Fémur/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Huesos de la Pierna/anatomía & histología , Animales , Arqueología , Sudáfrica
9.
J Hum Evol ; 133: 78-98, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358185

RESUMEN

The Sterkfontein Caves is currently the world's richest Australopithecus-bearing site. Included in Sterkfontein's hominin assemblage is StW 573 ('Little Foot'), a near-complete Australopithecus skeleton discovered in Member 2 in the Silberberg Grotto. Because of its importance to the fossil hominin record, the geological age of StW 573 has been the subject of significant debate. Three main hypotheses have been proposed regarding the formation and age of Member 2 and by association StW 573. The first proposes that Member 2 (as originally defined in the type section in the Silberberg Grotto) started to accumulate at around 2.58 Ma and that the unit is contained within the Silberberg Grotto. The second proposes that Member 2 started forming before 3.67 ± 0.16 Ma and that the deposit extends into the Milner Hall and close to the base of the cave system. The third proposes a 'two-stage burial scenario', in which some sediments and StW 573 represent a secondary and mixed-age accumulation reworked from a higher cave. The stratigraphic and sedimentological implications of these hypotheses are tested here through the application of a multiscale investigation of Member 2, with reference to the taphonomy of the StW 573 skeleton. The complete infilling sequence of Member 2 is described across all exposures of the deposit in the Silberberg Grotto and into the Milner Hall. Sediments are generally stratified and conformably deposited in a sequence of silty sands eroded from well-developed lateritic soils on the landscape surface. Voids, clasts and bioclasts are organized consistently across and through Member 2 conforming with the underlying deposit geometry, indicating gradual deposit accretion with no distinct collapse facies evident and only localized intra-unit postdepositional modification. The stratigraphy and sedimentology of Member 2 support a simple single-stage accumulation process of Member 2 and a primary association between the sediments of Member 2 and the StW 573 'Little Foot' skeleton.


Asunto(s)
Cuevas , Sedimentos Geológicos/análisis , Hominidae , Animales , Arqueología , Fósiles , Paleontología , Sudáfrica
10.
J Hum Evol ; 127: 67-80, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30777359

RESUMEN

Because of its exceptional degree of preservation and its geological age of ∼3.67 Ma, StW 573 makes an invaluable contribution to our understanding of early hominin evolution and paleobiology. The morphology of the bony labyrinth has the potential to provide information about extinct primate taxonomic diversity, phylogenetic relationships and locomotor behaviour. In this context, we virtually reconstruct and comparatively assess the bony labyrinth morphology in StW 573. As comparative material, we investigate 17 southern African hominin specimens from Sterkfontein, Swartkrans and Makapansgat (plus published data from two specimens from Kromdraai B), attributed to Australopithecus, early Homo or Paranthropus, as well as 10 extant human and 10 extant chimpanzee specimens. We apply a landmark-based geometric morphometric method for quantitatively assessing labyrinthine morphology. Morphology of the inner ear in StW 573 most closely resembles that of another Australopithecus individual from Sterkfontein, StW 578, recovered from the Jacovec Cavern. Within the limits of our sample, we observe a certain degree of morphological variation in the Australopithecus assemblage of Sterkfontein Member 4. Cochlear morphology in StW 573 is similar to that of other Australopithecus as well as to Paranthropus specimens included in this study, but it is substantially different from early Homo. Interestingly, the configuration of semicircular canals in Paranthropus specimens from Swartkrans differs from other fossil hominins, including StW 573. Given the role of the cochlea in the sensory-driven interactions with the surrounding environment, our results offer new perspectives for interpreting early hominin behaviour and ecology. Finally, our study provides additional evidence for discussing the phylogenetic polarity of labyrinthine traits in southern African hominins.


Asunto(s)
Oído Interno/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Evolución Biológica , Rasgos de la Historia de Vida , Sudáfrica
11.
J Hum Evol ; 126: 112-123, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30583840

RESUMEN

One of the most crucial debates in human paleoneurology concerns the timing and mode of the emergence of the derived cerebral features in the hominin fossil record. Given its exceptional degree of preservation and geological age (i.e., 3.67 Ma), StW 573 ('Little Foot') has the potential to shed new light on hominin brain evolution. Here we present the first detailed comparative description of the external neuroanatomy of StW 573. The endocast was virtually reconstructed and compared to ten southern African hominin specimens from Makapansgat, Malapa, Sterkfontein and Swartkrans attributed to Australopithecus and Paranthropus. We apply an automatic method for the detection of sulcal and vascular imprints. The endocranial surface of StW 573 is crushed and plastically deformed in a number of locations. The uncorrected and therefore minimum cranial capacity estimate is 408 cm3 and plots at the lower end of Australopithecus variation. The endocast of StW 573 approximates the rostrocaudally elongated and dorsoventrally flattened endocranial shape seen in Australopithecus and displays a distinct left occipital petalia. StW 573 and the comparative early hominin specimens share a similar sulcal pattern in the inferior region of the frontal lobes that also resembles the pattern observed in extant chimpanzees. The presumed lunate sulcus in StW 573 is located above the sigmoid sinus, as in extant chimpanzees, while it is more caudally positioned in SK 1585 and StW 505. The middle branch of the middle meningeal vessels derives from the anterior branch, as in MH 1, MLD 37/38, StW 578. Overall, the cortical anatomy of StW 573 displays a less derived condition compared to the late Pliocene/early Pleistocene southern African hominins (e.g., StW 505, SK 1585).


Asunto(s)
Evolución Biológica , Encéfalo/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Fósiles , Sudáfrica
12.
J Hum Evol ; 114: 1-19, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447752

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the co-Editors-in-Chief and the authors. The Results and Discussion of this article duplicate significant parts of book chapter "A revised stratigraphy of Kromdraai", published by L.B., R.M., R.C., F.T. and J.B. in Braga, J. and Thackeray, J.F. (Eds.), "Kromdraai. A Birthplace of Paranthropus in the Cradle of Humankind" (2016, SUN MeDIA MeTRO, pp. 31-47), https://doi.org/10.18820/9781928355076. One of the conditions of submission of a paper to Journal of Human Evolution is that authors declare explicitly that that their work is original and has not been published previously. Reuse of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

13.
J Hum Evol ; 95: 104-20, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27260177

RESUMEN

Despite the abundance of cercopithecoids in the fossil record, especially in South Africa, and the recent development of morphometric approaches, uncertainties regarding the taxonomic identification of isolated cranio-dental specimens remain. Because cercopithecoids, nearly always found in stratigraphic association with hominin remains in Plio-Pleistocene deposits, are considered as sensitive ecological and chronological biomarkers, a significant effort should be made to clarify their palaeobiodiversity by assessing additional reliable morphological diagnostic criteria. Here we test the relevance of both molar crown internal structure and bony labyrinth morphology for discrimination of fossil cercopithecoid species. We use microtomographic-based 3D virtual imaging and quantitative analyses to investigate tooth endostructural organization and inner ear shape in 29 craniodental specimens from the South African sites of Kromdraai, Makapansgat, Sterkfontein and Swartkrans and provide the first detailed description of the internal structural condition characterizing this Plio-Pleistocene primate assemblage. Our preliminary results show that enamel-dentine junction morphology could be informative for discriminating highly autapomorphic taxa such as Theropithecus, while semicircular canal shape is tentatively proposed as an efficient criterion for diagnosing Dinopithecus ingens. Further research in virtual paleoprimatology may contribute to the identification of unassigned isolated fossil remains and shed new light on the internal craniodental morphology of extinct primate taxa.


Asunto(s)
Cercopithecinae/anatomía & histología , Fósiles/anatomía & histología , Diente Molar/anatomía & histología , Canales Semicirculares/anatomía & histología , Animales , Paleodontología , Sudáfrica
14.
J Hum Evol ; 70: 36-48, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24698198

RESUMEN

StW 573, Little Foot, is the most complete Australopithecus skeleton yet discovered, with many of its bones found in their correct anatomical position. Since the discovery of the in situ skeleton in the Silberberg Grotto in 1997, several teams have attempted to date the fossil. This appeared a simple process because several flowstones are inter-bedded in the breccia above and below StW 573. Dating of these flowstones, using U-Pb (uranium-lead) isotope decay techniques, gave younger results than expected from the fauna and stratigraphic position, around 2.2 Ma (millions of years). Our recent stratigraphic, micromorphological and geochemical studies revealed that the stratigraphy is much more complicated than was previously thought, with localized post-depositional processes leading to the creation of voids within the breccia around the skeleton. These voids were then filled by multiple generations of flowstone growth. The research we present here demonstrates that the proposed dates based on the flowstone deposition can give only a minimum age for StW 573 and that the flowstone formation came after, and probably long after, the breccia deposition. If one takes account of the long evolution of these karst fillings, StW 573 appears to be significantly older than 2.2 Ma.


Asunto(s)
Cronología como Asunto , Fósiles , Hominidae , Datación Radiométrica , Animales , Arqueología , Evolución Biológica , Huesos/química , Sedimentos Geológicos/química , Radioisótopos de Plomo/química , Paleontología , Sudáfrica , Uranio/química
16.
J Hum Evol ; 65(4): 447-56, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24012253

RESUMEN

The site of Kromdraai B (KB) (Gauteng, South Africa) has yielded a minimum number of nine hominins including the type specimen of Paranthropus robustus (TM 1517), the only partial skeleton of this species known to date. Four of these individuals are juveniles, one is a subadult and four are young adults. They all occur with a macrofaunal assemblage spread across the succession of at least two time periods that occurred in South Africa approximately two million years ago. Here we report on an additional, newly discovered petrous temporal bone of a juvenile hominin, KB 6067. Following the description of KB 6067, we assess its affinities with Australopithecus africanus, P. robustus and early Homo. We discuss its developmental age and consider its association with other juvenile hominin specimens found at Kromdraai B. KB 6067 probably did not reach five years of age and in bony labyrinth morphology it is close to P. robustus, but also to StW 53, a specimen with uncertain affinities. However, its cochlear and oval window size are closer to some hominin specimens from Sterkfontein Member 4 and if KB 6067 is indeed P. robustus this may represent a condition that is evolutionarily less derived than that shown by TM 1517 and other conspecifics sampled so far. The ongoing fieldwork at KB, as well as the petrography and geochemistry of its deposits, will help to determine when the various KB breccias accumulated, and how time may be an important factor underlying the variation seen among KB 6067 and the rest of the fossil hominin sample from this site.


Asunto(s)
Evolución Biológica , Hominidae/anatomía & histología , Hueso Petroso/anatomía & histología , Animales , Hominidae/clasificación , Filogenia , Sudáfrica
17.
J Hum Evol ; 61(5): 538-48, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21700319

RESUMEN

In this paper, we present a critical analysis of the distribution of Paleolithic sites between the Massif Central and the Pyrenees (southwestern France) to understand the settlement patterns during the last climatic deterioration of the Quaternary period. This analysis used recent stratigraphic and archaeological data from thousands of systematic test pits conducted for rescue archaeology in different geomorphological contexts. Our analysis addresses crucial questions about the role of the Garonne alluvial plain in this territory during the Upper Paleolithic. The implications are discussed in the context of this region of Europe, which was considered to be a favorable zone for human occupation during glacial periods. The conclusions reveal a division of this territory into two parts separated by a large unoccupied or rarely occupied zone. We discuss perspectives not only concerning the territoriality of the prehistoric groups who lived on the margins of this no man's land, but also the cultural endemism that could have led to this geography, influenced by climatic conditions clearly more rigorous than previously recognized in this region.


Asunto(s)
Arqueología , Clima , Emigración e Inmigración/historia , Animales , Francia , Historia Antigua , Hominidae , Humanos
18.
Sci Rep ; 10(1): 4285, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179760

RESUMEN

Functional morphology of the atlas reflects multiple aspects of an organism's biology. More specifically, its shape indicates patterns of head mobility, while the size of its vascular foramina reflects blood flow to the brain. Anatomy and function of the early hominin atlas, and thus, its evolutionary history, are poorly documented because of a paucity of fossilized material. Meticulous excavation, cleaning and high-resolution micro-CT scanning of the StW 573 ('Little Foot') skull has revealed the most complete early hominin atlas yet found, having been cemented by breccia in its displaced and flipped over position on the cranial base anterolateral to the foramen magnum. Description and landmark-free morphometric analyses of the StW 573 atlas, along with other less complete hominin atlases from Sterkfontein (StW 679) and Hadar (AL 333-83), confirm the presence of an arboreal component in the positional repertoire of Australopithecus. Finally, assessment of the cross-sectional areas of the transverse foramina of the atlas and the left carotid canal in StW 573 further suggests there may have been lower metabolic costs for cerebral tissues in this hominin than have been attributed to extant humans and may support the idea that blood perfusion of these tissues increased over the course of hominin evolution.


Asunto(s)
Evolución Biológica , Encéfalo/metabolismo , Cabeza/fisiología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Fósiles , Hominidae/clasificación , Humanos , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA