Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol ; 142(1): 139-158, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895869

RESUMEN

ApoE4 enhances Tau neurotoxicity and promotes the early onset of AD. Pretangle Tau in the noradrenergic locus coeruleus (LC) is the earliest detectable AD-like pathology in the human brain. However, a direct relationship between ApoE4 and Tau in the LC has not been identified. Here we show that ApoE4 selectively binds to the vesicular monoamine transporter 2 (VMAT2) and inhibits neurotransmitter uptake. The exclusion of norepinephrine (NE) from synaptic vesicles leads to its oxidation into the toxic metabolite 3,4-dihydroxyphenyl glycolaldehyde (DOPEGAL), which subsequently activates cleavage of Tau at N368 by asparagine endopeptidase (AEP) and triggers LC neurodegeneration. Our data reveal that ApoE4 boosts Tau neurotoxicity via VMAT2 inhibition, reduces hippocampal volume, and induces cognitive dysfunction in an AEP- and Tau N368-dependent manner, while conversely ApoE3 binds Tau and protects it from cleavage. Thus, ApoE4 exacerbates Tau neurotoxicity by increasing VMAT2 vesicle leakage and facilitating AEP-mediated Tau proteolytic cleavage in the LC via DOPEGAL.


Asunto(s)
Enfermedad de Alzheimer/patología , Apolipoproteína E4/farmacología , Locus Coeruleus/patología , Tauopatías/patología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Anciano , Enfermedad de Alzheimer/psicología , Animales , Trastornos del Conocimiento/psicología , Femenino , Hipocampo/patología , Humanos , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Norepinefrina/metabolismo , Vesículas Sinápticas/metabolismo , Tauopatías/psicología
2.
Pain ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106457

RESUMEN

ABSTRACT: Spinal cord injury leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform, we explored whether such activity emerges in a thoracic spinal cord injury (SCI) contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which were correlated across multiple adjacent dorsal roots. Burst frequency correlated with behavioral mechanosensitivity. The same bursting events were recruited by afferent stimulation, and timing interactions with ongoing spontaneous bursts revealed that recruitment was limited by a prolonged post-burst refractory period. Ectopic bursting in afferent axons was driven by GABAA receptor activation, presumably by conversion of subthreshold GABAergic interneuronal presynaptic axoaxonic inhibitory actions to suprathreshold spiking. Collectively, the emergence of stereotyped bursting circuitry with hypersynchrony, sensory input activation, post-burst refractory period, and reorganization of connectivity represent defining features of an epileptiform network. Indeed, these same features were reproduced in naive animals with the convulsant 4-aminopyridine (fampridine). We conclude that spinal cord injury promotes the emergence of epileptiform activity in spinal sensory networks that promote profound corruption of sensory signaling. This includes hyperexcitability and bursting by ectopic spiking in afferent axons that propagate bidirectionally by reentrant central and peripheral projections as well as sensory circuit hypoexcitability during the burst refractory period. More broadly, the work links circuit hyperexcitability to epileptiform circuit emergence, further strengthening it as a conceptual basis to understand features of sensory dysfunction and neuropathic pain.

3.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37461440

RESUMEN

Spinal cord injury ( SCI ) leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform elsewhere, we explored whether such activity emerges in spinal sensory circuits in a thoracic SCI contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots ( DRs ) demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which synchronized across multiple adjacent DRs. Burst frequency correlated with behavioral mechanosensitivity. The same bursting events were recruited by afferent stimulation, and timing interactions with ongoing spontaneous bursts revealed that recruitment was limited by a prolonged post-burst refractory period. Ectopic bursting in afferent axons was driven by GABA A receptor activation, presumably via shifting subthreshold GABAergic interneuronal presynaptic axoaxonic inhibitory actions to suprathreshold spiking. Collectively, the emergence of stereotyped bursting circuitry with hypersynchrony, sensory input activation, post-burst refractory period, and reorganization of connectivity represent defining features of epileptiform networks. Indeed, these same features were reproduced in naïve animals with the convulsant 4-aminopyridine ( 4-AP ). We conclude that SCI promotes the emergence of epileptiform activity in spinal sensory networks that promotes profound corruption of sensory signaling. This corruption includes downstream actions driven by ectopic afferent bursts that propagate via reentrant central and peripheral projections and GABAergic presynaptic circuit hypoexcitability during the refractory period.

4.
J Comp Neurol ; 529(10): 2636-2657, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33483980

RESUMEN

Chronic immobilization stress (CIS) results in sex-dependent changes in opioid peptide levels and receptor subcellular distributions within the rat dorsal hippocampus, which are paralleled with an inability for males to acquire conditioned place preference (CPP) to oxycodone. Here, RNAScope in situ hybridization was used to determine the expression of hippocampal opioid peptides and receptors in unstressed (US) and CIS estrus female and male adult (∼2.5 months old ) Sprague Dawley rats. In all groups, dentate granule cells expressed PENK and PDYN; additionally, numerous interneurons expressed PENK. OPRD1 and OPRM1 were primarily expressed in interneurons, and to a lesser extent, in pyramidal and granule cells. OPRK1-was expressed in sparsely distributed interneurons. There were few baseline sex differences: US females compared to US males had more PENK-expressing and fewer OPRD1-expressing granule cells and more OPRM1-expressing CA3b interneurons. Several expression differences emerged after CIS. Both CIS females and males compared to their US counterparts had elevated: (1) PENK-expressing dentate granule cells and interneurons in CA1 and CA2/3a; (2) OPRD1 probe number and cell expression in CA1, CA2/3a and CA3b and the dentate gyrus; and (3) OPRK1-expressing interneurons in the dentate hilus. Also, CIS males compared to US males had elevated: (1) PDYN expression in granule cells; (2) OPRD1 probe and interneuron expression in CA2/3a; (3) OPRM1 in granule cells; and (4) OPRK1 interneuron expression in CA2/3a. The sex-specific changes in hippocampal opioid gene expression may impact network properties and synaptic plasticity processes that may contribute to the attenuation of oxycodone CPP in CIS males.


Asunto(s)
Hipocampo/metabolismo , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Estrés Psicológico/metabolismo , Animales , Femenino , Masculino , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Restricción Física , Caracteres Sexuales
5.
Ecol Evol ; 6(21): 7690-7705, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27891218

RESUMEN

Chelonians are expected to be negatively impacted by climate change due to limited vagility and temperature-dependent sex determination. However, few studies have examined how freshwater turtle distributions may shift under different climate change scenarios. We used a maximum entropy approach to model the distribution of five widespread North American Kinosternon species (K. baurii, K. flavescens, K. hirtipes, K. sonoriense, and K. subrubrum) under four climate change scenarios. We found that areas with suitable climatic conditions for K. baurii and K. hirtipes are expected to decline substantially during the 21st century. In contrast, the area with suitable climate for K. sonoriense will remain essentially unchanged, while areas suitable for K. flavescens and K. subrubrum are expected to substantially increase. The centroid for the distribution of four of the five species shifted northward, while the centroid for K. sonoriense shifted slightly southward. Overall, centroids shifted at a median rate of 37.5 km per decade across all scenarios. Given the limited dispersal ability of turtles, it appears unlikely that range shifts will occur rapidly enough to keep pace with climate change during the 21st century. The ability of chelonians to modify behavioral and physiological responses in response to unfavorable conditions may allow turtles to persist for a time in areas that have become increasingly unsuitable, but this plasticity will likely only delay local extinctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA