Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Org Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38327084

RESUMEN

Transition-metal-catalyzed asymmetric cross-coupling represents a powerful strategy for C-C bond formation and the synthesis of enantiomerically pure molecules. Here, we report a dual nickel/photoredox-catalyzed enantioselective reductive cross-coupling of aryl halides with α-bromobenzoates, readily generated from aliphatic aldehydes, to provide diverse chiral secondary benzylic alcohols that are important motifs in bioactive natural products and pharmaceuticals. This dual catalytic system features mild conditions, good functional group tolerance, broad substrate scope, excellent enantiocontrol, and avoidance of stoichiometric metal reductants, presenting great potential for late-stage functionalization of complex molecules.

2.
J Org Chem ; 89(4): 2223-2231, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38326966

RESUMEN

A nickel-catalyzed reductive anti-arylative cyclization of alkynyl enones with aryl halides has been developed. The reaction avoids the use of stoichiometric organometallic reagents and has a broad reaction scope and high functional group tolerance. This method offers an efficient way to access a variety of synthetically useful carbocycles that are widely found in many natural products and biologically active molecules.

3.
Environ Res ; 244: 117946, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104915

RESUMEN

The industrialization of hydrogen production through dark fermentation of food waste faces challenges, such as low yields and unpredictable fermentation processes. Biochar has emerged as a promising green additive to enhance hydrogen production in dark fermentation. Our study demonstrated that the introduction of Fe-modified biochar (Fe-L600) significantly boosted hydrogen production during thermophilic dark fermentation of food waste. The addition of Fe-L600 led to a remarkable 31.19% increase in hydrogen yield and shortened the time needed for achieving stabilization of hydrogen production from 18 h to 12 h. The metabolite analysis revealed an enhancement in the butyric acid pathway as the molar ratio of acetic acid to butyric acid decreased from 3.09 to 2.69 but hydrogen yield increased from 57.12 ± 1.48 to 76.78 ± 2.77 mL/g, indicating Fe-L600 improved hydrogen yield by regulating crucial metabolic pathways of hydrogen production. The addition of Fe-L600 also promoted the release of Fe2+ and Fe3+ and increased the concentrations of Fe2+ and Fe3+ in the fermentation system, which might promote the activity of hydrogenase and ferredoxin. Microbial community analysis indicated a substantial increase in the relative abundance of Thermoanaerobacterium after thermophilic dark fermentation. The relative abundances of microorganisms responsible for hydrolysis and acidogenesis were also observed to be improved in the system with Fe-L600 addition. This research provides a feasible strategy for improving hydrogen production of food waste and deepens the understanding of the mechanisms of biochar.


Asunto(s)
Carbón Orgánico , Alimento Perdido y Desperdiciado , Eliminación de Residuos , Fermentación , Alimentos , Ácido Butírico , Hidrógeno/metabolismo
4.
Biotechnol Appl Biochem ; 70(6): 1817-1829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37278155

RESUMEN

Astaxanthin is widely used in food, aquaculture, cosmetics, and pharmaceuticals due to its strong antioxidant activity and coloring ability, but its production from Phaffia rhodozyma remains the main challenge due to the high fermentation cost and low content of carotenoid. In this study, the production of carotenoids from food waste (FW) by a P. rhodozyma mutant was investigated. P. rhodozyma mutant screened by UV mutagenesis and flow cytometry could stably produce high carotenoids at 25°C, with carotenoid production (32.9 mg/L) and content (6.7 mg/g), respectively, increasing by 31.6% and 32.3% compared with 25 mg/L and 5.1 mg/g of wild strain. Interestingly, the carotenoid production reached 192.6 mg/L by feeding wet FW, which was 21% higher than batch culture. The 373 g vacuum freeze-dried products were obtained from the fermentation of 1 kg FW by P. rhodozyma, which contained 784 mg carotenoids and 111 mg astaxanthin. The protein, total amino acids, and essential amino acids content of the fermentation products were 36.6%, 40.5%, and 18.2% (w/w), respectively, and lysine-added fermentation products had the potential of high-quality protein feed source. This study provides insights for the high-throughput screening of mutants, astaxanthin production, and the development of the feed potential of FW.


Asunto(s)
Basidiomycota , Eliminación de Residuos , Citometría de Flujo , Alimento Perdido y Desperdiciado , Alimentos , Carotenoides/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo
5.
BMC Vet Res ; 16(1): 75, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131830

RESUMEN

BACKGROUND: The intestinal epithelial barrier, which works as the first line of defense between the luminal environment and the host, once destroyed, it will cause serious inflammation or other intestinal diseases. Tight junctions (TJs) play a vital role to maintain the integrity of the epithelial barrier. Lipopolysaccharide (LPS), one of the most important inflammatory factors will downregulate specific TJ proteins including Occludin and Claudin-1 and impair integrity of the epithelial barrier. Betaine has excellent anti-inflammatory activity but whether betaine has any effect on TJ proteins, particularly on LPS-induced dysfunction of epithelial barriers remains unknown. The purpose of this study is to explore the pharmacological effect of betaine on improving intestinal barrier function represented by TJ proteins. Intestinal porcine epithelial cells (IPEC-J2) were used as an in vitro model. RESULTS: The results demonstrated that betaine enhanced the expression of TJ proteins while LPS (1 µg/mL) downregulates the expression of these proteins. Furthermore, betaine attenuates LPS-induced decreases of TJ proteins both shown by Western blot (WB) and Reverse transcription-polymerase chain reaction (RT-PCR). The immunofluorescent images consistently revealed that LPS induced the disruption of TJ protein Claudin-1 and reduced its expression while betaine could reverse these alterations. Similar protective role of betaine on intestinal barrier function was observed by transepithelial electrical resistance (TEER) approach. CONCLUSION: In conclusion, our research demonstrated that betaine attenuated LPS-induced downregulation of Occludin and Claudin-1 and restored the intestinal barrier function.


Asunto(s)
Betaína/farmacología , Mucosa Intestinal/efectos de los fármacos , Lipopolisacáridos/toxicidad , Animales , Claudina-1/metabolismo , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/citología , Intestinos/efectos de los fármacos , Ocludina/metabolismo , Porcinos , Uniones Estrechas/efectos de los fármacos
6.
Med Sci Monit ; 26: e922372, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32323648

RESUMEN

BACKGROUND This study was performed to investigate the effect of local injection of asperosaponin VI (ASA VI) on the orthodontic tooth movement in rats. MATERIAL AND METHODS A total of 64 healthy female Sprague-Dawley rats were selected and divided into 2 groups randomly: the ASA VI group and the control group. For the ASA VI group, 10 mg/kg ASA VI solution was injected into buccal submucoperiosteal of bilaterally first maxillary molars, and the same volume of normal saline was given to the control group. The orthodontic force was applied to the maxillary first molars. All rats were sacrificed on days 3, 7, or 14. Tooth movement effects on the periodontium were analyzed through hematoxylin and eosin (H&E) staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemistry analysis. Tooth movement measurements and alveolar bone volumetric changes were analyzed using a micro-computed tomography (CT) scan. Molecular changes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. RESULTS The ASA VI group presented with a significant increase of tooth movement, osteoclast number, and the expression of osteoclast differentiation factor (ODF) compared with the control group. ASA VI also induced a significant decrease in bone volume and density and an increase in trabecular spacing and RANKL (receptor activator of nuclear factor kappa-B ligand) expression at the compression side. Furthermore, ASA VI stimulated bone formation on the tension side by enhancing OCN (osteocalcin) expression and RUNX2 (runt-related transcription factor 2) expression, increasing bone volume and density and decreasing in trabecular spacing. CONCLUSIONS Injection of ASA VI may accelerate tooth movement via increasing the activity of osteoclasts, stimulating bone resorption at the compression side. Furthermore, ASA VI has a positive effect on bone formation at the tension side.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Saponinas/farmacología , Técnicas de Movimiento Dental/métodos , Proceso Alveolar/efectos de los fármacos , Animales , Resorción Ósea/metabolismo , China , Femenino , Diente Molar/efectos de los fármacos , Diente Molar/metabolismo , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Resorción Radicular , Saponinas/metabolismo
8.
Neurobiol Dis ; 129: 29-37, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31042572

RESUMEN

Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disease caused by a CAG expansion, which translates into an elongated polyglutamine (polyQ) repeat near the amino-terminus of the huntingtin protein (HTT). This results in production of a toxic mutant huntingtin protein (mHTT) that leads to neuronal dysfunction and death. Currently, no disease-modifying treatments are available; however, numerous therapeutic strategies aimed at lowering HTT levels in the brain are under development. To date, studies have not closely examined the contribution of mHTT in neurons vs astrocytes to disease pathophysiology. To better understand the role of astrocytes in HD pathophysiology and the need for cell type specific targeting of HTT lowering therapeutic strategies, AAV capsids were employed that selectively transduce neurons, or both neurons and astrocytes. These vectors carrying miRNA sequences directed against HTT were injected into the YAC128 mouse model of HD to selectively lower HTT expression in neurons alone versus neurons and astrocytes. The results suggested that HTT lowering in neurons alone was not sufficient to rescue the motor phenotype in YAC128 mice. Furthermore, HTT lowering in both cell types was required to achieve maximal functional benefit. The study suggested that astrocyte dysfunction may play a critical role in HD pathogenesis, and thus astrocytes represent an important therapeutic target.


Asunto(s)
Astrocitos/metabolismo , Proteína Huntingtina/antagonistas & inhibidores , Enfermedad de Huntington/metabolismo , Animales , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Proteína Huntingtina/genética , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , MicroARNs , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Transducción Genética
9.
Neurobiol Dis ; 130: 104513, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31233883

RESUMEN

Pathological mutations in GBA, encoding lysosomal glucocerebrosidase (GCase), cause Gaucher disease (GD). GD is a multi-system disease with great phenotypic variation between individuals. It has been classified into type 1 with primarily peripheral involvement and types 2 and 3 with varying degrees of neurological involvement. GD is characterized by decreased GCase activity and subsequent accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Current murine models of neuronopathic GD mostly replicate the severe aspects of the neurological symptoms developing rapid progression and early lethality, thus presenting a short window for therapeutic testing. In order to develop a model of chronic neuronopathic GD, we reduced GCase in the central nervous system (CNS) of a mild GD mouse model (GbaD409V/D409V) via intracerebroventricular administration of an adeno-associated virus encoding a microRNA to Gba (AAV-GFP-miR-Gba). GbaD409V/D409V mice have significantly reduced GCase activity and increased substrate accumulation in the CNS. Phenotypically, these mice partially recapitulate features of mild type 1 GD. Their neurological examination reveals cognitive impairment with normal motor features. Administration of AAV-GFP-miR-Gba into GbaD409V/D409V pups in the CNS caused progressive lipid substrate accumulation. Phenotypically, AAV1-GFP-miR-Gba-treated mice were indistinguishable from their littermates until 10 weeks of age, when they started developing progressive neurological impairments, including hyperactivity, abnormal gait, and head retroflexion. Importantly, these impairments can be prevented by simultaneous administration of a miR-resistant GBA, demonstrating that the pathological effects are specifically due to Gba mRNA reduction. This novel model of neuronopathic GD offers several advantages over current models including slower progression of neurological complications and an increased lifespan, which make it more amenable for therapeutic testing.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , MicroARNs/genética , Actividad Motora/fisiología , Médula Espinal/metabolismo , Animales , Dependovirus , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Marcha/fisiología , Enfermedad de Gaucher/metabolismo , Vectores Genéticos , Glucosilceramidasa/metabolismo , Ratones , MicroARNs/metabolismo , Células 3T3 NIH
10.
Gene Ther ; 25(3): 205-219, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29785047

RESUMEN

The successful application of adeno-associated virus (AAV) gene delivery vectors as a therapeutic paradigm will require efficient gene delivery to the appropriate cells in affected organs. In this study, we utilized a rational design approach to introduce modifications to the AAV2 and AAVrh8R capsids and the resulting variants were evaluated for transduction activity in the retina and brain. The modifications disrupted either capsid/receptor binding or altered capsid surface charge. Specifically, we mutated AAV2 amino acids R585A and R588A, which are required for binding to its receptor, heparan sulfate proteoglycans, to generate a variant referred to as AAV2-HBKO. In contrast to parental AAV2, the AAV2-HBKO vector displayed low-transduction activity following intravitreal delivery to the mouse eye; however, following its subretinal delivery, AAV2-HBKO resulted in significantly greater photoreceptor transduction. Intrastriatal delivery of AAV2-HBKO to mice facilitated widespread striatal and cortical expression, in contrast to the restricted transduction pattern of the parental AAV2 vector. Furthermore, we found that altering the surface charge on the AAVrh8R capsid by modifying the number of arginine residues on the capsid surface had a profound impact on subretinal transduction. The data further validate the potential of capsid engineering to improve AAV gene therapy vectors for clinical applications.


Asunto(s)
Terapia Genética/métodos , Parvovirinae/crecimiento & desarrollo , Parvovirinae/inmunología , Animales , Encéfalo/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/inmunología , Técnicas de Transferencia de Gen , Vectores Genéticos , Células HeLa , Heparitina Sulfato , Humanos , Ratones , Ratones Endogámicos C57BL , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Transducción Genética/métodos
11.
Chemphyschem ; 18(22): 3189-3202, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28639317

RESUMEN

Carbon mineralization is one of the carbon capture utilization, and storage (CCUS) technologies that can be used to capture large quantities of CO2 and convert it into stable carbonate products that can be stored easily. Several CO2 mineralization processes have been proposed; however, there are no commercial-scale projects because there are still significant issues that need to be improved before commercialization can take place. In this work, we evaluate the CO2 and energy penalties related to the most well-known types of mineralization processes developed to date, in which the mineralization reaction takes place directly under aqueous conditions, high pressures and temperatures, and compared these with newer T-P swing processes and ball-mill reactor processes, which are under development. The data used in the evaluation are taken from published literature. By comparing the three processes, we identify important variables that contribute to high CO2 and energy penalties so that future research can focus on optimization of these variables. It is observed that slurry concentration (heating) and particle size (grinding) are critical factors, with mineral calcination and operating pressure constituting other important factors.

12.
Proc Natl Acad Sci U S A ; 110(9): 3537-42, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23297226

RESUMEN

Mutations of GBA1, the gene encoding glucocerebrosidase, represent a common genetic risk factor for developing the synucleinopathies Parkinson disease (PD) and dementia with Lewy bodies. PD patients with or without GBA1 mutations also exhibit lower enzymatic levels of glucocerebrosidase in the central nervous system (CNS), suggesting a possible link between the enzyme and the development of the disease. Previously, we have shown that early treatment with glucocerebrosidase can modulate α-synuclein aggregation in a presymptomatic mouse model of Gaucher-related synucleinopathy (Gba1(D409V/D409V)) and ameliorate the associated cognitive deficit. To probe this link further, we have now evaluated the efficacy of augmenting glucocerebrosidase activity in the CNS of symptomatic Gba1(D409V/D409V) mice and in a transgenic mouse model overexpressing A53T α-synuclein. Adeno-associated virus-mediated expression of glucocerebrosidase in the CNS of symptomatic Gba1(D409V/D409V) mice completely corrected the aberrant accumulation of the toxic lipid glucosylsphingosine and reduced the levels of ubiquitin, tau, and proteinase K-resistant α-synuclein aggregates. Importantly, hippocampal expression of glucocerebrosidase in Gba1(D409V/D409V) mice (starting at 4 or 12 mo of age) also reversed their cognitive impairment when examined using a novel object recognition test. Correspondingly, overexpression of glucocerebrosidase in the CNS of A53T α-synuclein mice reduced the levels of soluble α-synuclein, suggesting that increasing the glycosidase activity can modulate α-synuclein processing and may modulate the progression of α-synucleinopathies. Hence, increasing glucocerebrosidase activity in the CNS represents a potential therapeutic strategy for GBA1-related and non-GBA1-associated synucleinopathies, including PD.


Asunto(s)
Encéfalo/enzimología , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/enzimología , Glucosilceramidasa/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/enzimología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Gaucher/patología , Enfermedad de Gaucher/fisiopatología , Glucosilceramidasa/administración & dosificación , Glucosilceramidasa/genética , Glucosilceramidasa/uso terapéutico , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Memoria , Ratones , Ratones Transgénicos , Trastornos Parkinsonianos/fisiopatología , Estructura Cuaternaria de Proteína , Psicosina/análogos & derivados , Psicosina/metabolismo , alfa-Sinucleína/genética , Proteínas tau/química , Proteínas tau/metabolismo
13.
Tumour Biol ; 35(6): 5487-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24577891

RESUMEN

Matrix metalloproteinase 9 (MMP-9) plays an important role in the progression of several types of cancer by increasing tumor growth, migration, invasion, and metastasis and is associated with poor disease prognosis. The possible prognostic value of MMP-9 in osteosarcoma has also been examined, but due to inconsistent results between studies, it has not been possible to draw firm conclusions. To clarify this issue, we conducted a meta-analysis of published studies to provide a comprehensive evaluation of the effect of high MMP-9 expression on the survival outcomes of osteosarcoma patients. Seven studies with a total of 339 patients with osteosarcoma were examined. The pooled odds ratio (OR) with corresponding 95 % confidence interval (95 % CI) was calculated to evaluate the effect of MMP-9 expression on overall survival. Meta-analysis showed that patients with high MMP-9 expression were significantly associated with lower overall survival when compared to their counterparts with low or undetectable MMP-9 expression (OR=6.13, 95 % CI 3.45-10.89, P<0.001). Sensitivity analysis suggested the pooled OR was stable and not significantly changed when a single study was removed. The results from the systematic review and meta-analysis show that MMP-9 is an effective biomarker for predicting survival of patients with osteosarcoma.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Óseas/mortalidad , Metaloproteinasa 9 de la Matriz/análisis , Osteosarcoma/mortalidad , Neoplasias Óseas/enzimología , Humanos , Osteosarcoma/enzimología , Sesgo de Publicación , Tasa de Supervivencia
14.
J Nanosci Nanotechnol ; 14(9): 6915-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25924349

RESUMEN

As the current cost of mineral carbonation is too high for an economically viable industrial process, it is desirable to produce value-added products from CO2 mineralization process. In this work, a facile and cost-effective process was developed for the production of high purity SiO2 from acid-leached serpentine residue. The Si extraction rate is fast even under ambient conditions due to the highly defective structure of the residue. The reaction kinetics were studied and it was found that the Si extraction rate was under a combination of chemical reaction control and film diffusion control. The SiO2 sample prepared has high purity with a nanoporous structure, which renders it a potential candidate for applications such as an adsorbent and a catalyst support.


Asunto(s)
Asbestos Serpentinas/química , Nanopartículas/química , Dióxido de Silicio/química , Dióxido de Carbono , Contaminantes Ambientales/química , Restauración y Remediación Ambiental
15.
Chem Asian J ; 19(12): e202400180, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38650439

RESUMEN

This review explores the potential of using different types of ash, namely fly ash, biomass ash, and coal ash etc., as mediums for CO2 capture and sequestration. The diverse origins of these ash types - municipal waste, organic biomass, and coal combustion - impart unique physicochemical properties that influence their suitability and efficiency in CO2 absorption. This review first discusses the environmental and economic implications of using ash wastes, emphasizing the reduction in landfill usage and the transformation of waste into value-added products. Then the chemical/physical treatments of ash wastes and their inherent capabilities in binding or reacting with CO2 are introduced, along with current methodologies utilize these ashes for CO2 sequestration, including mineral carbonation and direct air capture techniques. The application of using ash wastes for CO2 capture are highlighted, followed by the discussion regarding challenges associated with ash-based CO2 absorption approach. Finally, the article projects into the future, proposing innovative approaches and technological advancements needed to enhance the efficacy of ash in combating the increasing CO2 levels. By providing a comprehensive analysis of current strategies and envisioning future prospects, this review aims to contribute to the field of sustainable CO2 absorption and environmental management.

16.
Ultrasound Med Biol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834493

RESUMEN

OBJECTIVE: Echocardiographic videos are commonly used for automatic semantic segmentation of endocardium, which is crucial in evaluating cardiac function and assisting doctors to make accurate diagnoses of heart disease. However, this task faces two distinct challenges: one is the edge blurring, which is caused by the presence of speckle noise or excessive de-noising operation, and the other is the lack of an effective feature fusion approach for multilevel features for obtaining accurate endocardium. METHODS: In this study, a deep learning model, based on multilevel edge perception and calibration fusion is proposed to improve the segmentation performance. First, a multilevel edge perception module is proposed to comprehensively extract edge features through both a detail branch and a semantic branch to alleviate the adverse impact of noise. Second, a calibration fusion module is proposed that calibrates and integrates various features, including semantic and detailed information, to maximize segmentation performance. Furthermore, the features obtained from the calibration fusion module are stored by using a memory architecture to achieve semi-supervised segmentation through both labeled and unlabeled data. RESULTS: Our method is evaluated on two public echocardiography video data sets, achieving average Dice coefficients of 93.05% and 93.93%, respectively. Additionally, we validated our method on a local hospital clinical data set, achieving a Pearson correlation of 0.765 for predicting left ventricular ejection fraction. CONCLUSION: The proposed model effectively solves the challenges encountered in echocardiography by using semi-supervised networks, thereby improving the segmentation accuracy of the ventricles. This indicates that the proposed model can assist cardiologists in obtaining accurate and effective research and diagnostic results.

17.
Environ Pollut ; 342: 123132, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081377

RESUMEN

Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.


Asunto(s)
Eliminación de Residuos , Suelo , Fertilizantes/análisis , Agricultura/métodos , Alimentos , Carbón Orgánico , Nitrógeno/análisis , Nutrientes/análisis
18.
Mol Ther ; 20(9): 1713-23, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22735381

RESUMEN

Central nervous system (CNS)-directed gene therapy with recombinant adeno-associated virus (AAV) vectors has been used effectively to slow disease course in mouse models of several neurodegenerative diseases. However, these vectors were typically tested in mice without prior exposure to the virus, an immunological scenario unlikely to be duplicated in human patients. Here, we examined the impact of pre-existing immunity on AAV-mediated gene delivery to the CNS of normal and diseased mice. Antibody levels in brain tissue were determined to be 0.6% of the levels found in systemic circulation. As expected, transgene expression in brains of mice with relatively high serum antibody titers was reduced by 59-95%. However, transduction activity was unaffected in mice that harbored more clinically relevant antibody levels. Moreover, we also showed that markers of neuroinflammation (GFAP, Iba1, and CD3) and histopathology (hematoxylin and eosin (H&E)) were not enhanced in immune-primed mice (regardless of pre-existing antibody levels). Importantly, we also demonstrated in a mouse model of Niemann Pick Type A (NPA) disease that pre-existing immunity did not preclude either gene transfer to the CNS or alleviation of disease-associated neuropathology. These findings support the continued development of AAV-based therapies for the treatment of neurological disorders.


Asunto(s)
Anticuerpos Antivirales/inmunología , Encéfalo/inmunología , Dependovirus/genética , Terapia Genética/métodos , Enfermedad de Niemann-Pick Tipo A/terapia , Adulto , Animales , Anticuerpos Antivirales/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Dependovirus/inmunología , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Inmunización , Ratones , Enfermedad de Niemann-Pick Tipo A/genética , Enfermedad de Niemann-Pick Tipo A/inmunología , Enfermedad de Niemann-Pick Tipo A/metabolismo , Transgenes
19.
Mol Ther ; 20(10): 1893-901, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22828503

RESUMEN

Niemann-Pick disease Type A (NPA) is a neuronopathic lysosomal storage disease (LSD) caused by the loss of acid sphingomyelinase (ASM). The goals of the current study are to ascertain the levels of human ASM that are efficacious in ASM knockout (ASMKO) mice, and determine whether these levels can be attained in non-human primates (NHPs) using a multiple parenchymal injection strategy. Intracranial injections of different doses of AAV1-hASM in ASMKO mice demonstrated that only a small amount of enzyme (<0.5 mg hASM/g tissue) was sufficient to increase survival, and that increasing the amount of hASM did not enhance this survival benefit until a new threshold level of >10 mg hASM/g tissue was reached. In monkeys, injection of 12 tracts of AAV1-hASM resulted in efficacious levels of enzyme in broad regions of the brain that was aided, in part, by axonal transport of adeno-associated virus (AAV) and movement through the perivascular space. This study demonstrates that a combination cortical, subcortical, and cerebellar injection protocol could provide therapeutic levels of hASM to regions of the NHP brain that are highly affected in NPA patients. The information from this study might help design new AAV-mediated enzyme replacement protocols for NPA and other neuronopathic LSDs in future clinical trials.


Asunto(s)
Terapia Genética , Enfermedad de Niemann-Pick Tipo A/terapia , Esfingomielina Fosfodiesterasa/deficiencia , Animales , Encéfalo/enzimología , Dependovirus/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos/genética , Inyecciones , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo A/patología , Primates/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo
20.
Sci Total Environ ; 905: 167294, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37741387

RESUMEN

Microbial extracellular respiration is an important energy metabolism on earth, which is significant for the elemental biogeochemical cycle. Herein, extracellular Fe(III) and electrode respiration were confirmed in Thermoanaerobacterium thermosaccharolyticum MJ2. The intra/extracellular electron transfer (IET/EET) mechanism of MJ2 was investigated by comparative genomic analysis for the first time. Morphological characterization and electrochemical properties of anode illustrated that MJ2 generated bio-electricity by forming a biofilm. The respiration chain inhibition and enzyme activity tests showed that hydrogenase with cytochrome c (Cyt-c) was involved in IET of MJ2. Noteworthily, the exogenous Cyt-c increased hydrogenase activity to promote bio-electricity generation by 92.84 %. The Cyt-c gene synteny between MJ2 and another well-known exoelectrogen (Thermincola potens JR) indicated that Cyt-c bound to the outer membrane mediated the formation of biofilm involved in EET of MJ2. This study broadened the understanding of microbial extracellular respiration diversity and provided new insights to explore the electron transfer pathways of exoelectrogens.


Asunto(s)
Fuentes de Energía Bioeléctrica , Hidrogenasas , Thermoanaerobacterium , Electrones , Compuestos Férricos , Clostridium , Genómica , Electrodos , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA