Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 193(4): 380-391, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37003622

RESUMEN

With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-ß, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.


Asunto(s)
Infecciones por VIH , Neumonía , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Macaca mulatta , Infecciones por VIH/patología , Pulmón/patología , Inflamación/patología , Neumonía/patología , Fibrosis , Derivados de la Morfina
2.
J Neurovirol ; 29(4): 377-388, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37418108

RESUMEN

Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.


Asunto(s)
Infecciones por VIH , Trastornos Relacionados con Opioides , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Infecciones por VIH/tratamiento farmacológico , Macaca mulatta , VIH , Carga Viral
3.
PLoS Biol ; 18(5): e3000660, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453744

RESUMEN

Increased life expectancy of patients diagnosed with HIV in the current era of antiretroviral therapy is unfortunately accompanied with the prevalence of HIV-associated neurocognitive disorders (HANDs) and risk of comorbidities such as Alzheimer-like pathology. HIV-1 transactivator of transcription (Tat) protein has been shown to induce the production of toxic neuronal amyloid protein and also enhance neurotoxicity. The contribution of astrocytes in Tat-mediated amyloidosis remains an enigma. We report here, in simian immunodeficiency virus (SIV)+ rhesus macaques and patients diagnosed with HIV, brain region-specific up-regulation of amyloid precursor protein (APP) and Aß (40 and 42) in astrocytes. In addition, we find increased expression of ß-site cleaving enzyme (BACE1), APP, and Aß in human primary astrocytes (HPAs) exposed to Tat. Mechanisms involved up-regulation of hypoxia-inducible factor (HIF-1α), its translocation and binding to the long noncoding RNA (lncRNA) BACE1-antisense transcript (BACE1-AS), resulting, in turn, in the formation of the BACE1-AS/BACE1 RNA complex, subsequently leading to increased BACE1 protein, and activity and generation of Aß-42. Gene silencing approaches confirmed the regulatory role of HIF-1α in BACE1-AS/BACE1 in Tat-mediated amyloidosis. This is the first report implicating the role of the HIF-1α/lncRNABACE1-AS/BACE1 axis in Tat-mediated induction of astrocytic amyloidosis, which could be targeted as adjunctive therapies for HAND-associated Alzheimer-like comorbidity.


Asunto(s)
Amiloidosis/virología , Astrocitos/metabolismo , Infecciones por VIH/complicaciones , Trastornos Neurocognitivos/virología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Infecciones por VIH/metabolismo , VIH-1 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Macaca mulatta , Persona de Mediana Edad , Trastornos Neurocognitivos/metabolismo , Fragmentos de Péptidos/metabolismo , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba
4.
Biol Cell ; 114(10): 276-292, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35713972

RESUMEN

BACKGROUND: HIV-1 Nef regulates several cellular functions in an infected cell which results in viral persistence and AIDS pathogenesis. The currently understood molecular mechanism(s) underlying Nef-dependent cellular function(s) are unable to explain how events are coordinately regulated in the host cell. Intracellular membranous trafficking maintains cellular homeostasis and is regulated by Rab GTPases - a member of the Ras superfamily. RESULTS: In the current study, we tried to decipher the role of Nef on the Rab GTPases-dependent complex and vesicular trafficking. Expression profiling of Rabs in Nef-expressing cells showed that Nef differentially regulates the expression of individual Rabs in a cell-specific manner. Further analysis of Rabs in HIV-1NL4-3 or ΔNef infected cells demonstrated that the Nef protein is responsible for variation in Rabs expression. Using a panel of competitive peptide inhibitors against Nef, we identified the critical domain of HIV-1 Nef involved in modulation of Rabs expression. The molecular function of Nef-mediated upregulation of Rab5 and Rab7 and downregulation of Rab11 increased the transport of SERINC5 from the cell surface to the lysosomal compartment. Moreover, the Nef-dependent increase in Rab27 expression assists exosome release. Reversal of Rabs expression using competitive inhibitors against Nef and manipulation of Rabs expression reduced viral release and infectivity of progeny virions. CONCLUSION: This study demonstrates that Nef differentially regulates the expression of Rab proteins in HIV-1 infected cells to hijack the host intracellular trafficking, which augments viral replication and HIV-1 pathogenesis. SIGNIFICANCE: Our study emphasized the indispensable role of HIV-1 protein Nef on various aspects of the intracellular trafficking regulated by Rabs GTPases, which explained how HIV-1 Nef may hijack membrane trafficking pathways in infected cells.


Asunto(s)
VIH-1 , VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Virión/química , Virión/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/análisis , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
Metab Brain Dis ; 38(3): 1079-1096, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36656397

RESUMEN

Parkinson's disease (PD) is a chronic, progressive, and second most prevalent neurological disorder affecting the motor system. It has been found that people suffering with inflammatory bowel disease (IBD) are at 22% more risk for PD. In the current study, we have established a molecular link between gut and brain. The microarray gene expression datasets of Homo sapiens were obtained from Gene Expression Omnibus Database. Major genes involved in gut-brain connection were found to be CXCR4, LRRK2, APOE, SNCA, IL6, HIF-1α, ABCA1 etc. The common biological pathways linking both the pathologies were found to be HIF-signaling, cytokines interactions, JAK-STAT pathway, cholesterol metabolism, apoptosis and CXCR4 signaling which modulates the synaptic function and neuronal survival in the mature brain. It is known that flavonoid-rich foods throughout life hold the potential to limit the inflammation, neurodegeneration and, to prevent the age-dependent cognitive impairment. Therefore, the potential receptor, CXCR4 was used further for docking with twenty-seven phytochemicals from 5 different classes of Flavonoids found in several dietary items. Docking studies of the top scoring compounds were compared with a known inhibitor (BPRCX807) of receptor CXCR4 (IC50 = 40.4 ± 8.0 nM). The study indicates that Flavan-3-ol families of flavonoids are the best fit and finest dietary supplements for improving brain health. Hence the food items like Pistachio nuts, hazelnuts, Green Tea, walnuts, etc. should be incorporated more in the diet of healthy people as well as in IBD and PD patients to prevent inflammation in gut and brain damage from oxidative stress.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Transducción de Señal , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación/tratamiento farmacológico
6.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901763

RESUMEN

HIV-1 infection in the era of combined antiretroviral therapy has been associated with premature aging. Among the various features of HIV-1 associated neurocognitive disorders, astrocyte senescence has been surmised as a potential cause contributing to HIV-1-induced brain aging and neurocognitive impairments. Recently, lncRNAs have also been implicated to play essential roles in the onset of cellular senescence. Herein, using human primary astrocytes (HPAs), we investigated the role of lncRNA TUG1 in HIV-1 Tat-mediated onset of astrocyte senescence. We found that HPAs exposed to HIV-1 Tat resulted in significant upregulation of lncRNA TUG1 expression that was accompanied by elevated expression of p16 and p21, respectively. Additionally, HIV-1 Tat-exposed HPAs demonstrated increased expression of senescence-associated (SA) markers-SA-ß-galactosidase (SA-ß-gal) activity and SA-heterochromatin foci-cell-cycle arrest, and increased production of reactive oxygen species and proinflammatory cytokines. Intriguingly, gene silencing of lncRNA TUG1 in HPAs also reversed HIV-1 Tat-induced upregulation of p21, p16, SA-ß gal activity, cellular activation, and proinflammatory cytokines. Furthermore, increased expression of astrocytic p16 and p21, lncRNA TUG1, and proinflammatory cytokines were observed in the prefrontal cortices of HIV-1 transgenic rats, thereby suggesting the occurrence of senescence activation in vivo. Overall, our data indicate that HIV-1 Tat-induced astrocyte senescence involves the lncRNA TUG1 and could serve as a potential therapeutic target for dampening accelerated aging associated with HIV-1/HIV-1 proteins.


Asunto(s)
Infecciones por VIH , VIH-1 , ARN Largo no Codificante , Animales , Humanos , Ratas , Envejecimiento/metabolismo , Astrocitos/metabolismo , Senescencia Celular , Citocinas/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Ratas Transgénicas , ARN Largo no Codificante/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana
7.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328304

RESUMEN

HIV persists in cellular reservoirs despite effective combined antiretroviral therapy (cART) and there is viremia flare up upon therapy interruption. Opioids modulate the immune system and suppress antiviral gene responses, which significantly impact people living with HIV (PLWH). However, the effect of opioids on viral reservoir dynamics remain elusive. Herein, we developed a morphine dependent SIVmac251 infected Rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. RMs on a morphine (or saline control) regimen were infected with SIVmac251. The cART was initiated in approximately half the animals five weeks post-infection, and morphine/saline administration continued until the end of the study. Among the untreated RM, we did not find any difference in plasma/CSF or in cell-associated DNA/RNA viral load in anatomical tissues. On the other hand, within the cART suppressed macaques, there was a reduction in cell-associated DNA load, intact proviral DNA levels, and in inducible SIV reservoir in lymph nodes (LNs) of morphine administered RMs. In distinction to LNs, in the CNS, the size of latent SIV reservoirs was higher in the CD11b+ microglia/macrophages in morphine dependent RMs. These results suggest that in the proposed model, morphine plays a differential role in SIV reservoirs by reducing the CD4+ T-cell reservoir in lymphoid tissues, while increasing the microglia/reservoir size in CNS tissue. The findings from this pre-clinical model will serve as a tool for screening therapeutic strategies to reduce/eliminate HIV reservoirs in opioid dependent PLWH.IMPORTANCE Identification and clearance of HIV reservoirs is a major challenge in achieving a cure for HIV. This is further complicated by co-morbidities that may alter the size of the reservoirs. There is an overlap between the risk factors for HIV and opioid abuse. Opiates have been recognized as prominent co-morbidities in HIV-infected populations. People infected with HIV also abusing opioids have immune modulatory effects and more severe neurological disease. However, the impact of opioid abuse on HIV reservoirs remains unclear. In this study, we used morphine dependent SIVmac251 infected rhesus macaque (RM) model to study the impact of opioids on HIV reservoirs. Our studies suggested that people with HIV who abuse opioids had higher reservoirs in CNS than the lymphoid system. Extrapolating the macaque findings in humans suggests that such differential modulation of HIV reservoirs among people living with HIV abusing opioids could be considered for future HIV cure research efforts.

8.
Cell Mol Life Sci ; 78(11): 4849-4865, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33821293

RESUMEN

Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.


Asunto(s)
Vesículas Extracelulares/metabolismo , Trastornos Relacionados con Sustancias/patología , Animales , Biomarcadores/metabolismo , Comunicación Celular , Citocromo P-450 CYP2E1/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/trasplante , Humanos , MicroARNs/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/terapia
9.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499350

RESUMEN

HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 µM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1ß, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.


Asunto(s)
Cocaína , VIH-1 , MicroARNs , Animales , Ratones , VIH-1/genética , VIH-1/metabolismo , Cocaína/farmacología , Cocaína/metabolismo , Transactivadores/metabolismo , MicroARNs/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Microglía/metabolismo , Citocinas/metabolismo , Células Cultivadas
10.
J Biol Chem ; 295(32): 10988-11001, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554807

RESUMEN

The development of the dendritic arbor in pyramidal neurons is critical for neural circuit function. Here, we uncovered a pathway in which δ-catenin, a component of the cadherin-catenin cell adhesion complex, promotes coordination of growth among individual dendrites and engages the autophagy mechanism to sculpt the developing dendritic arbor. Using a rat primary neuron model, time-lapse imaging, immunohistochemistry, and confocal microscopy, we found that apical and basolateral dendrites are coordinately sculpted during development. Loss or knockdown of δ-catenin uncoupled this coordination, leading to retraction of the apical dendrite without altering basolateral dendrite dynamics. Autophagy is a key cellular pathway that allows degradation of cellular components. We observed that the impairment of the dendritic arbor resulting from δ-catenin knockdown could be reversed by knockdown of autophagy-related 7 (ATG7), a component of the autophagy machinery. We propose that δ-catenin regulates the dendritic arbor by coordinating the dynamics of individual dendrites and that the autophagy mechanism may be leveraged by δ-catenin and other effectors to sculpt the developing dendritic arbor. Our findings have implications for the management of neurological disorders, such as autism and intellectual disability, that are characterized by dendritic aberrations.


Asunto(s)
Autofagia , Cateninas/metabolismo , Células Dendríticas/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia/genética , Cateninas/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Células Piramidales/metabolismo , Ratas , Catenina delta
11.
Retrovirology ; 18(1): 27, 2021 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-34538278

RESUMEN

BACKGROUND: We observe the emergence of several promoter-variant viral strains in India during recent years. The variant viral promoters contain additional copies of transcription factor binding sites present in the viral modulatory region or enhancer, including RBEIII, LEF-1, Ap-1 and/or NF-κB. These sites are crucial for governing viral gene expression and latency. Here, we infer that one variant viral promoter R2N3-LTR containing two copies of RBF-2 binding sites (an RBEIII site duplication) and three copies of NF-κB motifs may demonstrate low levels of gene expression noise as compared to the canonical RN3-LTR or a different variant R2N4-LTR (a duplication of an RBEIII site and an NF-κB motif). To demonstrate this, we constructed a panel of sub-genomic viral vectors of promoter-variant LTRs co-expressing two reporter proteins (mScarlet and Gaussia luciferase) under the dual-control of Tat and Rev. We established stable pools of CEM.NKR-CCR5 cells (CEM-CCR5RL reporter cells) and evaluated reporter gene expression under different conditions of cell activation. RESULTS: The R2N3-LTR established stringent latency that was highly resistant to reversal by potent cell activators such as TNF-α or PMA, or even to a cocktail of activators, compared to the canonical RN3- or the variant R2N4-LTR. The R2N3-LTR exhibited low-level basal gene expression in the absence of cell activation that enhanced marginally but significantly when activated. In the presence of Tat and Rev, trans-complemented in the form of an infectious virus, the R2N3-LTR demonstrated gene expression at levels comparable to the wild-type viral promoter. The R2N3-LTR is responsive to Tat and Rev factors derived from viral strains representing diverse genetic subtypes. CONCLUSION: With extremely low-level transcriptional noise, the R2N3-LTR can serve as an excellent model to examine the establishment, maintenance, and reversal of HIV-1 latency. The R2N3-LTR would also be an ideal viral promoter to develop high-throughput screening assays to identify potent latency-reversing agents since the LTR is not affected by the usual background noise of the cell.


Asunto(s)
Duplicado del Terminal Largo de VIH , VIH-1/genética , Regiones Promotoras Genéticas , Sitios de Unión , Regulación Viral de la Expresión Génica , Genes Reporteros , Variación Genética , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/aislamiento & purificación , VIH-1/fisiología , Humanos , FN-kappa B , Transcripción Genética , Replicación Viral , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Curr HIV/AIDS Rep ; 18(5): 459-474, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34427869

RESUMEN

PURPOSE OF REVIEW: Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS: In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.


Asunto(s)
Infecciones por VIH , Enfermedades del Sistema Nervioso , Trastornos Neurocognitivos , Complejo SIDA Demencia , Animales , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Humanos , Modelos Teóricos , Enfermedades del Sistema Nervioso/etiología , Trastornos Neurocognitivos/etiología
14.
J Neurosci ; 38(23): 5367-5383, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29760177

RESUMEN

The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cells resulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B, which were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat-exposed mouse primary microglial cells further confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.SIGNIFICANCE STATEMENT Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins, such as HIV-1 Tat, can activate microglia is thus of paramount importance. This study demonstrated that HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6, resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.


Asunto(s)
Infecciones por VIH/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , MicroARNs/metabolismo , Microglía/virología , Factor de Transcripción STAT3/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Femenino , Regulación de la Expresión Génica/fisiología , VIH-1 , Macaca mulatta , Masculino , Ratones , MicroARNs/genética , Microglía/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/metabolismo
15.
Brain Behav Immun ; 80: 227-237, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30872089

RESUMEN

While the advent of combination antiretroviral therapy (cART) has dramatically increased the lifespan of people living with HIV-1 paradoxically, the prevalence of NeuroHIV in people treated with cART is on the rise. It has been well documented that despite the effectiveness of cART in suppressing viremia, CNS continues to harbor viral reservoirs with persistent low-level virus replication. This, in turn, leads to the presence and accumulation of early viral protein - HIV-1 Tat, that is a well-established cytotoxic agent. In the current study, we demonstrated that exposure of mouse microglia to HIV-1 Tat resulted both in a dose- and time-dependent upregulation of miRNA-34a, with concomitant downregulation of NLRC5 (a negative regulator of NFκB signaling) expression. Using bioinformatics analyses and Argonaute immunoprecipitation assay NLRC5 was identified as a novel target of miRNA-34a. Transfection of mouse primary microglia with miRNA-34a mimic significantly downregulated NLRC5 expression, resulting in increased expression of NFκB p65. In contrast, transfection of cells with miRNA-34a inhibitor upregulated NLRC5 levels. Using pharmacological approaches, our findings showed that HIV-1 Tat-mediated microglial activation involved miRNA-34a-mediated downregulation of NLRC5 with concomitant activation of NFκB signaling. Reciprocally, inhibition of miRNA-34a blocked HIV-1 Tat-mediated microglial activation. In summary, our findings identify yet another novel mechanism of HIV-1 Tat-mediated activation of microglia involving the miRNA-34a-NLRC5-NFκB axis. These in vitro findings were also validated in the medial prefrontal cortices of HIV-1 transgenic rats as well as in SIV-infected rhesus macaques. Overall, these findings reveal the involvement of miRNA-34a-NLRC5-NFκB signaling axis in HIV-1 Tat-mediated microglial inflammation.


Asunto(s)
Encefalitis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Femenino , Macaca mulatta , Masculino , Corteza Prefrontal/metabolismo , Cultivo Primario de Células , Ratas Sprague-Dawley , Ratas Transgénicas , Transducción de Señal , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación
16.
J Neurosci ; 37(13): 3599-3609, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28270571

RESUMEN

Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Because HIV-1 Transactivator of Transcription (Tat) protein continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1ß levels and enhanced the IL-1ß secretion. These in vitro findings were validated in archival brain tissues from Simian Immunodeficiency Virus (SIV)-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in vivo involved administration of lipopolysaccharide (LPS) to HIV transgenic (Tg) rats followed by assessment of IL-1ß mRNA expression and inflammasome activation (ASC oligomers and mature IL-1ß). Intriguingly, LPS potentiated upregulation of IL-1ß mRNA and inflammasome activation in HIV-Tg rats compared with the wild-type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1ß secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Therefore, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.SIGNIFICANCE STATEMENT Despite successful suppression of viremia with increased longevity in the era of combined antiretroviral therapy, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial, and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV-1 Transactivator of Transcription (Tat) protein can activate microglia is thus of paramount importance. Herein, we demonstrate a novel role of Tat in priming and activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in microglial cells and in HIV-Tg rats administered lipopolysaccharide. Targeting NLRP3 inflammasome pathway mediators could thus be developed as therapeutic interventions to alleviate or prevent neuroinflammation and subsequent cognitive impairment in HIV-positive patients.


Asunto(s)
Encéfalo/inmunología , Encefalitis Viral/inmunología , Inflamasomas/inmunología , Microglía/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Citocinas/inmunología , Femenino , Mediadores de Inflamación/inmunología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Ratas , Ratas Transgénicas
17.
J Neurovirol ; 23(6): 935-940, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29147885

RESUMEN

Despite the success of combination antiretroviral therapy (cART), there is increased prevalence of HIV-associated neurocognitive disorders (HAND) in HIV-1-infected individuals on cART, which poses a major health care challenge. Adding further complexity to this long-term antiretroviral use is the comorbidity with drugs of abuse such as morphine, cocaine, and methamphetamine, which can in turn, exacerbate neurologic and cognitive deficits associated with HAND. Furthermore, HIV proteins, such as the transactivator of transcription (Tat) and the envelope protein (gp120), as well as antiretrovirals themselves can also contribute to the progression of neurodegeneration underlying HAND. In the field of NeuroHIV and drug addiction, EVs hold the potential to serve as biomarkers of cognitive dysfunction, targets of therapy, and as vehicles for therapeutic delivery of agents that can ameliorate disease pathogenesis. Based on the success of a previous Satellite Symposium in 2015 at the ISEV meeting in Washington, experts again expanded on their latest research findings in the field, shedding light on the emerging trends in the field of Extracellular Vesicle (EV) biology in NeuroHIV and drug abuse. The satellite symposium sought to align experts in the fields of NeuroHIV and drug abuse to share their latest insights on the role of EVs in regulating neuroinflammation, neurodegeneration, peripheral immune response, and HIV latency in HIV-infected individuals with or without the comorbidity of drug abuse.


Asunto(s)
Complejo SIDA Demencia/terapia , Fármacos Anti-VIH/uso terapéutico , Portadores de Fármacos/uso terapéutico , Vesículas Extracelulares/metabolismo , VIH/efectos de los fármacos , Trastornos Relacionados con Sustancias/terapia , Complejo SIDA Demencia/complicaciones , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/virología , Fármacos Anti-VIH/metabolismo , Biomarcadores/metabolismo , Cocaína/administración & dosificación , Portadores de Fármacos/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/trasplante , Expresión Génica , VIH/genética , VIH/metabolismo , VIH/patogenicidad , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Metanfetamina/administración & dosificación , Morfina/administración & dosificación , Trastornos Relacionados con Sustancias/complicaciones , Trastornos Relacionados con Sustancias/inmunología , Trastornos Relacionados con Sustancias/virología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/inmunología
18.
Adv Exp Med Biol ; 964: 163-175, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315271

RESUMEN

Sigma-1 receptors (Sig-1R) are recognized as a unique class of non-G protein-coupled intracellular protein. Sig-1R binds to its ligand such as cocaine , resulting in dissociation of Sig-1R from mitochondrion-associated ER membrane (MAM) to the endoplasmic reticulum (ER), plasma membrane, and nuclear membrane, regulating function of various proteins. Sig-1R has diverse roles in both physiological as well as in pathogenic processes. The disruption of Sig-1R pathways has been implicated as causative mechanism(s) in the development of both neurodegenerative disorders such as Alzheimer disease (AD ), Parkinson disease (PD ), amyotrophic lateral sclerosis (ALS ) and Huntington Disease (HD ) . Additionally, the interaction of cocaine and Sig-1R has more recently been implicated in potentiating the pathogenesis of HIV-associated neurocognitive disorders (HAND) through impairment of blood-brain barrier (BBB), microglial activation and astrogliosis. On the other hand, restoration of Sig-1R homeostasis has been shown to exert neuroprotective effects. In this review, we provide an overview of how Sig-1R plays a role in the pathogenesis of neurodegenerative disorders and cocaine and implications for future development of therapeutic strategies.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptores sigma/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cocaína/efectos adversos , Humanos , Ligandos , Receptor Sigma-1
19.
Am J Respir Cell Mol Biol ; 55(5): 736-748, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27391108

RESUMEN

Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell-substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2-related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the mechanism(s) by which cocaine mediates barrier dysfunction could provide insights into the development of potential therapeutic targets for cocaine-mediated pulmonary hypertension.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Comunicación Autocrina , Cocaína/efectos adversos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Becaplermina , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
J Neuroinflammation ; 13: 33, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26860188

RESUMEN

BACKGROUND: Neuroinflammation associated with advanced human immunodeficiency virus (HIV)-1 infection is often exacerbated by chronic cocaine abuse. Cocaine exposure has been demonstrated to mediate up-regulation of inflammatory mediators in in vitro cultures of microglia. The molecular mechanisms involved in this process, however, remain poorly understood. In this study, we sought to explore the underlying signaling pathways involved in cocaine-mediated activation of microglial cells. METHODS: BV2 microglial cells were exposed to cocaine and assessed for toll-like receptor (TLR2) expression by quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, and immunofluorescence staining. The mRNA and protein levels of cytokines (TNFα, IL-6, MCP-1) were detected by qPCR and ELISA, respectively; level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection kit; activation of endoplasmic reticulum (ER)-stress pathways were detected by western blot. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of activating transcription factor 4 (ATF4) with the TLR2 promoter. Immunoprecipitation followed by western blotting with tyrosine antibody was used to determine phosphorylation of TLR2. Cocaine-mediated up-regulation of TLR2 expression and microglial activation was validated in cocaine-injected mice. RESULTS: Exposure of microglial cells to cocaine resulted in increased expression of TLR2 with a concomitant induction of microglial activation. Furthermore, this effect was mediated by NADPH oxidase-mediated rapid accumulation of ROS with downstream activation of the ER-stress pathways as evidenced by the fact that cocaine exposure led to up-regulation of pPERK/peIF2α/ATF4 and TLR2. The novel role of ATF4 in the regulation of TLR2 expression was confirmed using genetic and pharmacological approaches. CONCLUSIONS: xThe current study demonstrates that cocaine-mediated activation of microglia involves up-regulation of TLR2 through the ROS-ER stress-ATF4-TLR2 axis. Understanding the mechanism(s) involved in cocaine-mediated up-regulation of ROS-ER stress/TLR2 expression and microglial activation could have implications for the development of potential therapeutic targets aimed at resolving neuroinflammation in cocaine abusers.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Microglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA