Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Inorg Chem ; 63(21): 9992-10000, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38742312

RESUMEN

A series of thiosemicarbazonato-hydrazinatopyridine zinc(II) complexes were evaluated as direct air CO2 capture agents. The complexes sequester CO2 in a methanol solution as a metal-coordinated methylcarbonate. The reaction is reversible upon sparging of solutions with an inert gas (N2 or Ar). The capture process involves metal-ligand cooperativity with the noncoordinating nitrogen of the hydrazinatopyridine functional group serving as a Brønsted-Lowry base and the zinc acting as a Lewis acid. In this study, the pendent amine of the thiosemicarbazonato group was varied to include 4-phenyl (ZnL5), 4-(trifluoromethyl)phenyl (ZnL6), 4-cyanophenyl (ZnL7), 4-tolyl (ZnL8), and 4-naphthyl (ZnL9). Hyperconjugation between the pendent group and the ligand core resulted in modulation of the metal ion acidity, as quantified by ligand exchange equilibrium constants (K3 = 193-511) and ligand basicity (pKa,MeOH = 11.09-11.94). Variations in electronic structure that decreased ligand basicity were more than offset by increases in Lewis acidity. The equilibrium constant (K1) for CO2 capture varied from 46300 to 73700. Overall, the value of K1 was directly related to the relative Lewis acidity of the complexes (K3). Notably, there was an overall inverse relationship between K1 and the ligand basicity. The results provide insights into ligand design to further improve CO2 capture.

2.
Inorg Chem ; 62(6): 2751-2759, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36715745

RESUMEN

In this study, a series of thiosemicarbazonato-hydrazinatopyridine metal complexes were evaluated as CO2 capture agents. The complexes incorporate a non-coordinating, basic hydrazinatopyridine nitrogen in close proximity to a Lewis acidic metal ion allowing for metal-ligand cooperativity. The coordination of various metal ions with (diacetyl-2-(4-methyl-thiosemicarbazone)-3-(2-hydrazinopyridine) (H2L1) yielded ML1 (M = Ni(II), Pd(II)), ML1(CH3OH) (M = Cu(II), Zn(II)), and [ML1(PPh3)2]BF4 (M = Co(III)) complexes. The ML1(CH3OH) complexes reversibly capture CO2 with equilibrium constants of 88 ± 9 and 6900 ± 180 for Cu(II) and Zn(II), respectively. Ligand effects were evaluated with Zn(II) through variation of the 4-methyl-thiosemicarbazone with 4-ethyl (H2L2), 4-phenethyl (H2L3), and 4-benzyl (H2L4) derivatives. The equilibrium constant for CO2 capture increased to 11,700 ± 300, 15,000 ± 400, and 35,000 ± 200 for ZnL2(MeOH), ZnL3(MeOH), and ZnL4(MeOH), respectively. Quantification of ligand basicity and metal ion Lewis acidity shows that changes in CO2 capture affinity are largely associated with ligand basicity upon substitution of Cu(II) with Zn(II), while variation of the thiosemicarbazone ligand enhances CO2 affinity by tuning the metal ion Lewis acidity. Overall, the Zn(II) complexes effectively capture CO2 from dilute sources with up to 90%, 86%, and 65% CO2 capture efficiency from 400, 1000, and 2500 ppm CO2 streams.

3.
Eur J Inorg Chem ; 26(34)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584911

RESUMEN

A series of isomeric bis(alkylthiocarbamate) copper complexes have been synthesized, characterized, and evaluated for antiproliferation activity. The complexes were derived from ligand isomers with 3-methylpentyl (H2L2) and cyclohexyl (H2L3) backbone substituents, which each yield a pair of linkage isomers. The thermodynamic products CuL2a/3a have two imino N and two S donors resulting in three five-member chelate rings (555 isomers). The kinetic isomers CuL2b/3b have one imino and one hydrazino N donor and two S donors resulting in four-, six-, and five-member rings (465 isomers). The 555 isomers have more accessible CuII/I potentials (E1/2 = -811/-768 mV vs. ferrocenium/ferrocene) and lower energy charge transfer bands than their 465 counterparts (E1/2 = -923/-854 mV). Antiproliferation activities were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR-90) using the MTT assay. CuL2a was potent (A549EC50 = 0.080 µM) and selective (IMR-90EC50/A549EC50 = 25) for A549. Its linkage isomer CuL2b had equivalent A549 activity, but lower selectivity (IMR-90EC50/A549EC50 = 12.5). The isomers CuL3a and CuL3b were less potent with A549EC50 values of 1.9 and 0.19 µM and less selective with IMR-90EC50/A549EC50 ratios of 2.3 and 2.65, respectively. There was no correlation between reduction potential and A549 antiproliferation activity/selectivity.

4.
Inorg Chem ; 61(25): 9792-9800, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687329

RESUMEN

In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.


Asunto(s)
Hidrógeno , Níquel , Acetonitrilos , Ligandos , Níquel/química , Oxidación-Reducción
5.
Inorg Chem ; 61(20): 7715-7719, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35549215

RESUMEN

Linkage isomers are coordination compounds with the same composition but different donor atoms, resulting in distinct physical and electronic structures. A pair of linkage isomers, CuL555 and CuL465, derived from phenylglyoxal bis(ethylthiocarbamate) were synthesized, isolated, and characterized by structural, electrochemical, and spectroscopic methods. The isomers are stable in solution under ambient conditions, but CuL465 converts to CuL555 in acid, consistent with quantum-chemical calculations. The complexes were screened against a lung adenocarcinoma cell line (A549) and a nonmalignant lung fibroblast cell line (IMR-90) to evaluate the antiproliferation activity. CuL555 and CuL465 possessed EC50 values of 0.113 ± 0.030 and 0.115 ± 0.038 µM for A549 and 1.87 ± 0.29 and 0.77 ± 0.22 µM for IMR-90, respectively.


Asunto(s)
Cobre , Cobre/química , Cobre/farmacología , Isomerismo
6.
Inorg Chem ; 59(7): 4835-4841, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32193928

RESUMEN

As atmospheric levels of carbon dioxide (CO2) continue to increase, there is an immediate need to balance the carbon cycle. Current approaches require multiple processes to fix CO2 from the atmosphere or flue gas and then reduce it to value-added products. The zinc(II) catalyst Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-pyridinehydrazonato)) reduces CO2 from air to formate with a faradaic efficiency of 15.1% based on total charge. The catalyst utilizes metal-ligand cooperativity and redox-active ligands to fix, activate, and reduce CO2. This approach provides a new strategy that incorporates sustainable earth-abundant metals that are oxygen and water tolerant.

7.
Inorg Chem ; 59(7): 4924-4935, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32159342

RESUMEN

A series of hybrid ligands (H2L1-H2L3) derived from 4-methyl-3-thiosemicarbazide and hydrazinecarbothioic acid O-alkyl esters were synthesized and characterized by NMR. The ligands were chelated with copper (4-6), nickel (7-9), and zinc (10-12) and characterized by spectroscopy, electrochemistry, and single crystal X-ray crystallography. The chelated metals displayed substantial anodic shifts in the CuII/I reduction potential of ∼160 mV relative to their bis(thiosemicarbazone) analogues. The metal chelates 4-12 were evaluated for potential anticancer activity by MTT assays, and selected results were confirmed by clonogenic and trypan blue assays. The copper derivatives 4 and 6 were found to have potent and cancer-selective antiproliferative effects, with GI50 values less than 100 nM in A549 lung adenocarcinoma cells compared with at least 20-fold less activity in IMR90 nonmalignant lung fibroblasts. In comparison, the nickel complexes were much less active and had little cancer-selectivity. Varying by ligand, the zinc complexes were less potent or had comparable activity compared to that of the corresponding copper complex. UV-visible spectroscopy indicated that zinc complex 10 was transmetalated in the presence of equimolar copper, whereas nickel complex 7 was not. Copper complexes 4 and 6 were also assessed in the NCI60 screen and were found to have cytotoxic activity against most solid tumor cell lines. In MTT assays, 4 and 6 were substantially more active against A549 cancer cells than Cu(ATSM) and were more cancer-selective (for A549 compared to IMR-90) than Cu(GTSM). Our results suggest that hybrid thiosemicarbazone-alkylthiocarbamate copper complexes have potential for development as new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Tiocarbamatos/farmacología , Tiosemicarbazonas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Cobre/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Níquel/química , Tiocarbamatos/síntesis química , Tiosemicarbazonas/síntesis química , Zinc/química
8.
Inorg Chem ; 58(18): 12025-12039, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31479262

RESUMEN

A series of crystalline nickel(II) complexes (1-3) based on inexpensive bis(thiosemicarbazone) ligands diacetylbis(4-methyl-3-thiosemicarbazone) (H2ATSM), diacetylbis(4,4-dimethyl-3-thiosemicarbazone) (H2ATSDM), and diacetylbis[4-(2,2,2-trifluoroethyl)-3-thiosemicarbazone] (H2ATSM-F6) were synthesized and characterized by single-crystal X-ray diffraction and NMR, UV-visible, and Fourier transform infrared spectroscopies. Modified electrodes GC-1-GC-3 were prepared with films of 1-3 deposited on glassy carbon and evaluated as potential hydrogen evolution reaction (HER) catalysts. HER studies in 0.5 M aqueous H2SO4 (10 mA cm-2) revealed dramatic shifts in the overpotential from 0.740 to 0.450 V after extended cycling for 1 and 2. The charge-transfer resistances for GC-1-GC-3 were determined to be 270, 160, and 630 Ω, respectively. Characterization of the modified surfaces for GC-1 and GC-2 by scanning electron microscopy and Raman spectroscopy revealed similar crystalline coatings before HER that changed to surface-modified crystallites after conditioning. The surface of GC-3 had an initial glasslike appearance before HER that delaminated after HER. The differences in the surface morphology and the effect of conditioning are correlated with crystal-packing effects. Complexes 1 and 2 pack as columns of interacting complexes in the crystallographic a direction with short interplanar spacings between 3.37 and 3.54 Å. Complex 3 packs as columns of isolated molecules in the crystallographic b direction with long-range interplanar spacings of 9.40 Å.

9.
Inorg Chem ; 58(19): 12986-12997, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31503487

RESUMEN

The zinc(II) complex of diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazonepyridine), ZnL1 (1), was prepared and evaluated as a precatalyst for the hydrogen evolution reaction (HER) under homogeneous conditions in acetonitrile. Complex 1 is protonated on the noncoordinating nitrogen of the hydrazonepyridine moiety to yield the active catalyst Zn(HL1)OAc (2) upon addition of acetic acid. Addition of methyl iodide to 1 yields the corresponding methylated derivative ZnL2I (3). In solution, partial dissociation of the coordinated iodide yields the cationic derivative 3'. Complexes 1-3 were characterized by 1H NMR, FT-IR, and UV-visible spectroscopies. The solid-state structures of 2 and 3 were determined by single crystal X-ray diffraction. HER studies conducted in acetonitrile with acetic acid as the proton source yield a turnover frequency (TOF) of 7700 s-1 for solutions of 1 at an overpotential of 1.27 V and a TOF of 6700 s-1 for solutions of 3 at an overpotential of 0.56 V. For both complexes, the required potential for catalysis, Ecat/2, is larger than the thermodynamic reduction potential, E1/2, indicative of a kinetic barrier attributed to intramolecular proton rearrangement. The effect is larger for solutions of 1 (+440 mV) than for solutions of 3 (+160 mV). Controlled potential coulometry studies were used to determine faradaic efficiencies of 71 and 89% for solutions of 1 and 3, respectively. For both catalysts, extensive cycling of potential under catalytic conditions results in the deposition of a film on the glassy carbon electrode surface that is active as an HER catalyst. Analysis of the film of 3 by X-ray photoelectron spectroscopy indicates the complex remains intact upon deposition. A proposed ligand-centered HER mechanism with 1 as a precatalyst to 2 is supported computationally using density functional theory (DFT). All catalytic intermediates in the mechanism were structurally and energetically characterized with the DFT/B3LYP/6-311g(d,p) in solution phase using a polarizable continuum model (PCM). The thermodynamic feasibility of the mechanism is supported by calculation of equilibrium constants or reduction potentials for each proposed step.

10.
Inorg Chem ; 57(21): 13486-13493, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351080

RESUMEN

In this study, we report the electrocatalytic behavior of the neutral, monomeric Ni(II) complex of diacetyl-bis( N-4-methyl-3-thiosemicarbazonato), NiL1, for ligand-assisted metal-centered hydrogen evolution in acetonitrile (ACN) and dimethylformamide (DMF). Using foot-of-the-wave analysis (FOWA), NiL1 displays a maximum turnover frequency (TOF) of 4200 and 1200 s-1 for acetic acid (CH3COOH) in ACN and DMF, whereas for trifluoroacetic acid (CF3COOH) the TOFs are 1300 and 120 s-1 in ACN and DMF, respectively. In ACN, the overpotentials are 0.53 and 0.67 V for CH3COOH and CF3COOH, respectively. In DMF, the overpotential is 0.85 V for CH3COOH. First-order dependence with respect to the catalyst is established. NiL1 displays a minimum Faradaic efficiency of 87% from controlled potential electrolysis. Gas analysis from controlled potential electrolysis in both ACN and DMF using CH3COOH and CF3COOH confirms NiL1 as an electrocatalyst to produce H2. In ACN, TONs of 48 and 24 were obtained for CH3COOH and CF3COOH, respectively in 4 h. In DMF, TONs of 13 and 3 were obtained for CH3COOH and CF3COOH, respectively. The H2 evolution reaction was evaluated using deuterated acid, demonstrating an inverse kinetic isotope, which is consistent with formation of a metal hydride intermediate. A proposed ligand-assisted metal-centered mechanism for HER is supported by computational investigations. All catalytic intermediates in the proposed mechanism were structurally and energetically characterized using density functional theory (DFT), with the B3LYP/6-311g(d,p) and BP86/TZV/P in solution modeled via polarizable continuum model. The final step of catalysis involves the reaction of [HNi(L1·)]- with H+ generating H2. The correctness of proposed mechanism was confirmed by location of corresponding transition state (TS) having single imaginary frequency ( i1786 cm-1).

11.
Inorg Chem ; 56(18): 11254-11265, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28857556

RESUMEN

In this study, we report the electrocatalytic behavior of the neutral, monomeric Cu(II) complex of diacetyl-bis(N-4-methyl-3-thiosemicarbazonato), CuL1, for metal-assisted ligand-centered hydrogen evolution in acetonitrile and dimethylformamide. CuL1 displays a maximum turnover frequency (TOF) of 10 000 s-1 in acetonitrile and 5100 s-1 in dimethylformamide at an overpotential of 0.80 and 0.76 V, respectively. The rate law is first-order in catalyst and second-order in proton concentration. Gas analysis from controlled potential electrolysis confirms CuL1 as an electrocatalyst to produce H2 with a minimum Faradaic efficiency of 81% and turnover numbers as high as 73 while showing no sign of degradation over 23 h. The H2 evolution reaction (HER) was probed using deuterated acid, demonstrating a kinetic isotope effect of 7.54. A proton inventory study suggests one proton is involved in the rate-determining step. Catalytic intermediates were identified using 1H NMR, X-ray photoelectron, and UV-visible spectroscopies. All catalytic intermediates in the proposed mechanism were successfully optimized using density functional theory calculations with the B3LYP functional and the 6-311g(d,p) basis set and support the proposed mechanism.

12.
Inorg Chem ; 56(4): 2177-2187, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28182418

RESUMEN

The homogeneous, nonaqueous catalytic activity of the rhenium-thiolate complex ReL3 (L = diphenylphosphinobenzenethiolate) for the hydrogen evolution reaction (HER) has been transferred from nonaqueous homogeneous to aqueous heterogeneous conditions by immobilization on a glassy carbon electrode surface. A series of modified electrodes based on ReL3 and its oxidized precursor [ReL3][PF6] were fabricated by drop-cast methods, yielding catalytically active species with HER overpotentials for a current density of 10 mA/cm2, ranging from 357 to 919 mV. The overpotential correlates with film resistance as measured by electrochemical impedance spectroscopy and film morphology as determined by scanning and transmission electron microscopy. The lowest overpotential was for films based on the ionic [ReL3][PF6] precursor with the inclusion of carbon black. Stability measurements indicate a 2 to 3 h conditioning period in which the overpotential increases, after which no change in activity is observed within 24 h or upon reimmersion in fresh aqueous, acidic solution. Electronic spectroscopy results are consistent with ReL3 as the active species on the electrode surface; however, the presence of an undetected quantity of catalytically active degradation species cannot be excluded. The HER mechanism was evaluated by Tafel slope analysis, which is consistent with a novel Volmer-Heyrovsky-Tafel-like mechanism that parallels the proposed homogeneous HER pathway. Proposed mechanisms involving traditional metal-hydride processes vs ligand-centered reactivity were examined by density functional theory, including identification and characterization of relevant transition states. The ligand-centered path is energetically favored with protonation of cis-sulfur sites culminating in homolytic S-H bond cleavage with H2 evolution via H atom coupling.

13.
J Am Chem Soc ; 138(25): 7844-7, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27326672

RESUMEN

A new pathway for homogeneous electrocatalytic H2 evolution and H2 oxidation has been developed using a redox active thiosemicarbazone and its zinc complex as seminal metal-free and transition-metal-free examples. Diacetyl-bis(N-4-methyl-3-thiosemicarbazone) and zinc diacetyl-bis(N-4-methyl-3-thiosemicarbazide) display the highest reported TOFs of any homogeneous ligand-centered H2 evolution catalyst, 1320 and 1170 s(-1), respectively, while the zinc complex also displays one of the highest reported TOF values for H2 oxidation, 72 s(-1), of any homogeneous catalyst. Catalysis proceeds via ligand-centered proton-transfer and electron-transfer events while avoiding traditional metal-hydride intermediates. The unique mechanism is consistent with electrochemical results and is further supported by density functional theory. The results identify a new direction for the design of electrocatalysts for H2 evolution and H2 oxidation that are not reliant on metal-hydride intermediates.

14.
J Inorg Biochem ; 246: 112288, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37320890

RESUMEN

A series of hybrid thiosemicarbazone-alkylthiocarbamate copper complexes with similar electronic environments but distinct physical structures have been prepared, characterized, and evaluated for antiproliferation activity. The complexes include the constitutional isomers (1-phenylpropane-1-imine-(O-ethylthiocarbamato)-2-one-(N-methylthiosemicarbazonato))copper(II) (CuL1) and (1-phenylpropane-1-one-(N-methylthiosemicarbazonato)-2-imine-(O-ethylthiocarbamato))copper(II) (CuL2) along with (1-propane-1-imine-(O-ethylthiocarbamato)-2-one-(N-methylthiosemicarbazonato))copper(II) (CuL3). Complexes CuL1 and CuL2 differ in the positions of the pendent thiosemicarbazone (TSC) and alkylthiocarbamate (ATC) moieties on the 1-phenylpropane backbone. Complex CuL3 employs a propane backbone with the TSC in the 2-position as in CuL1. The isomer pair CuL1 and CuL2 have equivalent electronic environments with indistinguishable CuII/I potentials (E1/2 = -0.86 V vs. ferrocenium/ferrocene) and electron paramagnetic resonance (EPR) spectra (g∥ = 2.26, g⊥ = 2.08). The electronic structure of CuL3 has a similar E1/2 of -0.84 V and identical EPR parameters to CuL1, 2. Single crystal X-ray diffraction studies confirm a consistent donor environment with no substantial variation in the CuN or CuS bond distances and angles between the complexes. The antiproliferation activities of the CuL1-3 were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR-90) using the MTT assay. CuL1 had the highest A549 activity (A549EC50 = 0.065 µM) and selectivity (IMR-90EC50/A549EC50 = 20). The constitutional isomer CuL2 displayed decreased A549 activity (0.18 µM) and selectivity (10.6). The complex CuL3 displayed activity (0.009 µM) similar to CuL1 but with a lack of selectivity (1.0). Cellular copper loading determined by ICP-MS was consistent with the activity and selectivity trends. The complexes CuL1-3 did not induce reactive oxygen species (ROS) generation.


Asunto(s)
Complejos de Coordinación , Tiosemicarbazonas , Cobre/química , Propano , Espectroscopía de Resonancia por Spin del Electrón , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Iminas , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Cristalografía por Rayos X , Ligandos
15.
Acta Crystallogr C ; 67(Pt 4): o129-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21467618

RESUMEN

The title compound, C(17)H(18)O(3), prepared by microwave irradiation of benzophenone and dioxane, crystallizes in a racemic mixture that forms one-dimensional chains via strong hydrogen bonding of the hydroxy group to the adjacent symmetry-generated 1,4-dioxan-2-yl group; the O-H···O distance is 1.99 (3) Å and the O-H···O angle is 160 (2)°.

16.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 12): m1892-3, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22199651

RESUMEN

The crystal structure of the title compound, [Cu(2)(C(2)H(3)O(2))(4)(C(10)H(14)N(2)O)(2)], reveals a dinuclear Cu(II) complex located about a center of inversion. The coordination environment of each Cu(II) cation is distorted octa-hedral, composed of four bridging acetate ligands, an apical pyridine donor and is completed by a Cu-Cu bond. The amide H atom forms intra-molecular hydrogen bonds to two carboxyl O atoms. In the crystal, weak inter-molecular pyridine-amide C-H⋯O inter-actions are also present.

17.
J Inorg Biochem ; 225: 111620, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619407

RESUMEN

Fungi are ubiquitous in nature, and typically cause little or no environmental or pathogenic damage to their plant, animal, and human hosts. However, a small but growing number of pathogenic fungi are spreading world-wide at an alarming rate threatening global ecosystem health and proliferation. Many of these emerging pathogens have developed multi-drug resistance to front line therapeutics increasing the urgency for the development of new antifungal agents. This review examines the development of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes as potential antifungal agents against more than 65 different fungal strains. The fungistatic activity of the compounds are quantified based on the zone of inhibition, minimum inhibitory concentration, or growth inhibition percentage. In this review, reported activities were standardized based on molar concentrations to simplify comparisons between different compounds. Of all the fungal strains reported in the review, A. niger in particular was very resistant towards a majority of tested compounds. Our analysis of the data shows that metal complexes are typically more active than non-coordinated ligands with copper(II) and zinc(II) complexes generally displaying the highest activity.


Asunto(s)
Antifúngicos/farmacología , Complejos de Coordinación/farmacología , Tiosemicarbazonas/farmacología , Antifúngicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Hongos/efectos de los fármacos , Humanos , Ligandos , Metales Pesados/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tiosemicarbazonas/química
18.
Inorg Chem ; 49(22): 10427-35, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20945841

RESUMEN

A series of iron(III) complexes based on the tetradentate ligand 4-((1-methyl-1H-imidazol-2-yl)methyl)-1-thia-4,7-diazacyclononane (L) has been synthesized, and their solution properties investigated. Addition of FeCl(3) to methanol solutions of L yields [LFeCl(2)]FeCl(4) as a dark red solid. X-ray crystallographic analysis reveals a pseudo-octahedral environment around iron(III) with the three nitrogen donors of L coordinated facially. Ion exchange reactions with NaPF(6) in methanol facilitate chloride exchange resulting in a different diastereomer for the [LFeCl(2)](+) cation. X-ray analysis of [LFeCl(2)]PF(6) finds meridional coordination of the three nitrogen donors of L. Electrochemical studies of [LFeCl(2)](+) in acetonitrile display a single Fe(III)/(II) reduction potential at -280 mV versus ferrocenium/ferrocene. In methanol, a broad cathodic wave is observed because of partial exchange of one chloride for methoxide with half-potentials of -170 mV and -440 mV for [LFeCl(2)](+/0) and [LFeCl(OCH(3))](+/0), respectively. The equilibrium constants for chloride exchange are 7 × 10(-4) M(-1) for Fe(III) and 2 × 10(-8) M(-1) for Fe(II). In aqueous solutions chloride exchange yields three accessible complexes as a function of pH. Strongly acidic conditions yield the aqua complex [LFeCl(OH(2))](2+) with a measured pK(a) of 3.8 ± 0.1. Under mildly acidic conditions, the µ-OH complex [(LFeCl)(2)(OH)](3+) with a pK(a) of 6.1 ± 0.3 is obtained. The µ-oxo complex [(LFeCl)(2)(O)](2+) is favored under basic conditions. The diiron Fe(III)/Fe(III) complexes [(LFeCl)(2)(OH)](3+) and [(LFeCl)(2)(O)](2+) can be reduced by one electron to the mixed valence Fe(III)/Fe(II) derivatives at -170 mV and -390 mV, respectively. From pH dependent voltammetric studies, the pK(a) of the mixed valent µ-OH complex [(LFeCl)(2)(OH)](2+) is calculated at 10.3.


Asunto(s)
Complejos de Coordinación/síntesis química , Compuestos Ferrosos/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Ligandos , Estructura Molecular , Oxidación-Reducción , Soluciones/química
19.
Inorg Chem ; 48(21): 9974-6, 2009 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-19795870

RESUMEN

A nickel(II) thiolate complex incorporating three N-donor types (amino, amido, and imidazole) has been synthesized and characterized. The (N(3)S)Ni complex, [N-{2-[(2-mercapto-2-methylpropyl)amino]ethyl}-1-methylimidazole-2-carboxamido]nickel(II) (1), is stable in the presence of O(2) but readily forms the sulfinato (RSO(2)(-)) derivative 2 upon the addition of H(2)O(2). Electrochemical investigations of 1 reveal an irreversible sulfur-based oxidation at +0.17 V vs Fc(+)/Fc (200 mV/s) that shifts to +0.81 V upon oxidation to 2. Density functional theory investigations of 1 reveal a highest occupied molecular orbital that is predominantly sulfur-based, consistent with the observed sulfur-based oxidation and O(2) stability.


Asunto(s)
Níquel/química , Compuestos Organometálicos/síntesis química , Teoría Cuántica , Azufre/química , Superóxido Dismutasa/química , Amidas/química , Aminas/química , Sitios de Unión , Imidazoles/química , Modelos Químicos , Estructura Molecular , Compuestos Organometálicos/química , Oxidación-Reducción , Compuestos de Sulfhidrilo/química
20.
Chem Commun (Camb) ; 55(64): 9440-9443, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31328206

RESUMEN

The molecular catalyst diacetyl-bis(N-4-methyl-3-thiosemi-carbazonato)nickel(ii) (NiATSM) was integrated with Si for light-driven hydrogen evolution from water. Compared to an equivalent loading of Ni metal, the NiATSM/p-Si electrode performed better. Durability of the surface-bound catalyst under operation in acid was achieved without covalent attachment by using Nafion binding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA