Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 136: 105508, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265278

RESUMEN

The development of implant metal-free surfaces has gained attention since non-benefic results have been reported related to the metallic ions released from metal implants to the human body. Ceramic coatings have been proposed as a possible solution however, the detachment of these coatings, during implantation or even in function, can compromise its function. In order to overcome this problem, this work proposes a novel hybrid Ti6Al4V-ZrO2 surface, starting with laser texturing of the Ti6Al4V substrate by Laser Nd:YV04, followed by the allocation of the zirconia (ZrO2) powder and its subsequent sintering by hot pressing process. Results revealed that zirconia strongly adheres to titanium textured surfaces since no detachment was found under tribological and adhesion scratch tests. Moreover, the tribological results showed that the incorporation of zirconia into textured titanium surface reduces significantly the wear rate of titanium (≈93%), which is a good indicator of low metallic particles/ions released to the body. These results suggest that this novel surface with good aesthetic properties and improved wear resistance (given by zirconia) and mechanical resistance (from titanium) can be a promising solution for dental implants, especially for implant/abutment or abutment/ceramic contact zones, and thus have a huge impact on the long-term performance of implants.


Asunto(s)
Implantes Dentales , Titanio , Humanos , Ensayo de Materiales , Titanio/química , Circonio/química , Rayos Láser , Iones , Propiedades de Superficie
2.
Mater Sci Eng C Mater Biol Appl ; 108: 110390, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923937

RESUMEN

The development of new surface designs to enhance the integration process between surgically placed implants and biological tissues remains a challenge for the scientific community. In this way and trying to overcome this issue, in this work, laser technology was explored to produce novel textures on the surface of green zirconia compacts produced by cold pressing technique. Two strategies regarding line design (8 and 16 lines design) and different laser parameters (laser power and number of laser passages) were explored to assess their influence on geometry and depth of created textures. The produced textures were evaluated with Scanning Electron Microscopy (SEM) and it was observed that well-defined textured surfaces with regular geometric features (cavities or pillars) were obtained by laser combining different strategies lines design and parameters. The potential of proposed textures was also evaluated regarding surface wettability, friction performance (static and dynamic coefficient of friction evolution) against bone, aging resistance and flexural strength. Results demonstrated that all the produced textures display a super hydrophilic or hydrophilic behavior. Regarding the friction behavior, it was experimentally observed a high initial static coefficient of friction (COF) for all produced textures. Concerning the aging resistance, all the textured surfaces revealed a low monoclinic content, less than 25% after 5 h of hydrothermal aging. The flexural strength results showed that the mechanical resistance of zirconia was not significantly compromised with the laser action. Based on the obtained results, it is possible to prove that the processing route used for manufacturing the new and different surface designs (cold pressing technique followed by laser texturing) showed to be particularly effective for the production of zirconia implants with customized surface designs according to the properties required in a specific application. These new surface designs besides to enhance the surface wettability and also to improve the fixation at the initial moment of the implantation, do not significantly compromise the resistance to aging and the mechanical performance of zirconia. Hence, a positive impact on the long-term performance of the zirconia implants may be expected with the proposed novel laser textured surface designs.


Asunto(s)
Rayos Láser , Prótesis e Implantes , Circonio/química , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Temperatura
3.
J Mech Behav Biomed Mater ; 89: 54-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30265866

RESUMEN

Ti6Al4V-alloy is commonly used in dental and orthopedic applications where tribochemical reactions occur at material/bone interface. These reactions are one of the main concerns regarding Ti6Al4V implants due to the generation of wear particles, linked to the release of metallic ions in toxic concentration which occurs when TiO2 passive film is destroyed by means of wear and corrosion simultaneously. In the present study, a multi-material Ti6Al4V-PEEK cellular structure is proposed. Selective Laser Melting technique was used to produce Ti6Al4V dense and cellular structured specimens, whilst Hot-Pressing technique was employed to obtain multi-material Ti6Al4V-PEEK structures. This study investigates the tribocorrosion behavior of these materials under reciprocating sliding, comparing them with commercial forged Ti6Al4V. Open-circuit-potential was measured before, during and after sliding while dynamic coefficient of friction was assessed during sliding. The results showed an improved wear resistance and a lower tendency to corrosion for the multi-material Ti6Al4V-PEEK specimens when compared to dense and cellular structures mono-material specimens. This multi-material solution gathering Ti6Al4V and PEEK, besides being able to withstand the loads occurring after implantation on dental and orthopedic applications, is a promising alternative to fully dense metals once it enhances the tribocorrosion performance.


Asunto(s)
Materiales Biocompatibles/química , Calor , Cetonas/química , Rayos Láser , Ensayo de Materiales , Procedimientos Ortopédicos , Polietilenglicoles/química , Titanio/química , Aleaciones , Benzofenonas , Corrosión , Polímeros , Propiedades de Superficie
4.
J Biomed Mater Res B Appl Biomater ; 106(4): 1534-1545, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28748671

RESUMEN

This work presents a novel texture design for implants surface functionalization, through the creation of line-shaped textures on Ti6Al4V surfaces and subsequent sintering of hydroxyapatite (HAp) powder into the designated locations. HAp-rich locations were designed to avoid HAp detachment during insertion, thus guaranteeing an effective osseointegration. This process starts by creating textured lines using a Nd:YAG laser, filling these lines with HAp powder and sintering HAp using a CO2 laser. The adhesion of HAp is known to be influenced by HAp sintering parameters, especially laser power and scanning speed and also by the textured lines manufacturing. Different laser parameters combinations were used to assess the sintering and adhesion of HAp to the textured lines. HAp adhesion was assessed by performing high energy ultrasonic cavitation tests and sliding tests mimicking an implant insertion, with Ti6Al4V/HAp specimens sliding against animal bone. The HAp content retained after these tests was measured and results showed that an excellent HAp sintering and adhesion was achieved when using a scan speed of 1 mm/s and laser power between 9 and 9.6 W. It is important to emphasize that results indicated that the HAp bioactivity was maintained when using these conditions, validating this functionalization process for the production of hip prosthesis with improved bioactivity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1534-1545, 2018.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Durapatita/química , Titanio/química , Aleaciones , Rayos Láser , Oseointegración , Propiedades de Superficie
5.
J Mech Behav Biomed Mater ; 60: 212-219, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26849309

RESUMEN

In the oral cavity, abrasive wear is predictable at exposed tooth or restorative surfaces, during mastication and tooth brushing. Also, wear can occur at contacting surfaces between the Ti-based prosthetic structures and implants in presence of abrasive compounds from food or toothpaste. Thus, the aim of this work was to compare the abrasive wear resistance of PEEK and Ti6Al4V on three-body abrasion related to different hydrated silica content and loads. Surfaces of Ti6Al4V or PEEK cylinders (8mm diameter and 4mm height) were wet ground on SiC papers and then polished with 1µm diamond paste. After that, surfaces were ultrasonically cleaned in propyl alcohol for 15min and then in distilled water for 10min. Micro-scale abrasion tests were performed at 60rpm and on different normal loads (0.4, 0.8 or 1.2N) after 600 ball revolutions using suspensions with different weight contents of hydrated silica. After abrasive tests, wear scars on flat samples were measured to quantify the wear volume and characterized by scanning electron microscope (SEM) to identify the dominant wear mechanisms. Results showed a higher volume loss rate on PEEK than that recorded on Ti6Al4V,, when subjected to three-body abrasion tests involving hydrated silica suspensions. An increase in volume loss was noted on both tested materials when the abrasive content or load was increased. PEEK was characterized by less wear resistance than that on Ti6Al4V after micro-scale abrasion wear in contact with hydrated silica particles, as commonly found in toothpastes.


Asunto(s)
Esmalte Dental , Cetonas/química , Polietilenglicoles/química , Titanio/química , Aleaciones , Benzofenonas , Humanos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA