Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1441: 103-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884707

RESUMEN

The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.


Asunto(s)
Linaje de la Célula , Animales , Humanos , Diferenciación Celular/genética , Linaje de la Célula/genética , Corazón/fisiología , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Transducción de Señal , Células Madre/metabolismo , Células Madre/citología , Células Madre/fisiología
2.
Proc Natl Acad Sci U S A ; 114(23): 5830-5837, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28584083

RESUMEN

Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 (Pax3) plays a predominant role. Head and some neck muscles do not derive from somites, but mainly form from mesoderm in the pharyngeal region. Entry into the myogenic program also depends on the myogenic determination factor (MyoD) family of genes, but Pax3 is not expressed in these myogenic progenitors, where different gene regulatory networks function, with T-box factor 1 (Tbx1) and paired-like homeodomain factor 2 (Pitx2) as key upstream genes. The regulatory genes that underlie the formation of these muscles are also important players in cardiogenesis, expressed in the second heart field, which is a major source of myocardium and of the pharyngeal arch mesoderm that gives rise to skeletal muscles. The demonstration that both types of striated muscle derive from common progenitors comes from clonal analyses that have established a lineage tree for parts of the myocardium and different head and neck muscles. Evolutionary conservation of the two routes to skeletal muscle in vertebrates extends to chordates, to trunk muscles in the cephlochordate Amphioxus and to muscles derived from cardiopharyngeal mesoderm in the urochordate Ciona, where a related gene regulatory network determines cardiac or skeletal muscle cell fates. In conclusion, Eric Davidson's visionary contribution to our understanding of gene regulatory networks and their evolution is acknowledged.


Asunto(s)
Redes Reguladoras de Genes , Músculo Esquelético/citología , Animales , Evolución Biológica , Linaje de la Célula , Desarrollo Embrionario/genética , Ratones , Músculo Esquelético/metabolismo , Miocardio/citología , Miocardio/metabolismo
3.
Genes Dev ; 26(18): 2103-17, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22987640

RESUMEN

How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles.


Asunto(s)
Extremidades/embriología , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Mioblastos/citología , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Transducción de Señal
4.
Development ; 143(5): 872-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26839363

RESUMEN

Pax3 and Foxc2 have been shown genetically to mutually repress each other in the mouse somite. Perturbation of this balance in multipotent cells of the dermomyotome influences cell fate; upregulation of Foxc2 favours a vascular fate, whereas higher levels of Pax3 lead to myogenesis. Foxc1 has overlapping functions with Foxc2. In Foxc1/2 double-mutant embryos, somitogenesis is severely affected, precluding analysis of somite derivatives. We have adopted a conditional approach whereby mutations in Foxc1 and Foxc2 genes were targeted to Pax3-expressing cells. Inclusion of a conditional reporter allele in the crosses made it possible to follow cells that had expressed Pax3. At the forelimb level, endothelial and myogenic cells migrate from adjacent somites into the limb bud. This population of endothelial cells is compromised in the double mutant, whereas excessive production of myogenic cells is observed in the trunk. However, strikingly, myogenic progenitors fail to enter the limbs, leading to the absence of skeletal muscle. Pax3-positive migratory myogenic progenitors, marked by expression of Lbx1, are specified in the somite at forelimb level, but endothelial progenitors are absent. The myogenic progenitors do not die, but differentiate prematurely adjacent to the somite. We conclude that the small proportion of somite-derived endothelial cells in the limb is required for the migration of myogenic limb progenitors.


Asunto(s)
Células Endoteliales/metabolismo , Miembro Anterior/embriología , Factores de Transcripción Forkhead/genética , Desarrollo de Músculos/fisiología , Factores de Transcripción Paired Box/metabolismo , Somitos/metabolismo , Animales , Movimiento Celular , Separación Celular , Cruzamientos Genéticos , Femenino , Citometría de Flujo , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Hibridación in Situ , Esbozos de los Miembros/embriología , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Mutación , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Fenotipo
5.
Development ; 143(7): 1149-59, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26893346

RESUMEN

To identify cell-based decisions implicated in morphogenesis of the mammalian liver, we performed clonal analysis of hepatocytes/hepatoblasts in mouse liver development, using a knock-in allele of Hnf4a/laacZ This transgene randomly undergoes a low frequency of recombination that generates a functional lacZ gene that produces ß-galactosidase in tissues in which Hnf4a is expressed. Two types of ß-galactosidase-positive clones were found. Most have undergone three to eight cell divisions and result from independent events (Luria-Delbrück fluctuation test); we calculate that they arose between E8.5 and E13.5. A second class was mega-clones derived from early endoderm progenitors, generating many descendants. Some originated from multi-potential founder cells, with labeled cells in the liver, pancreas and/or intestine. A few mega-clones populate only one side of the liver, indicating hepatic cell chirality. The patterns of labeled cells indicate cohesive and often oriented growth, notably in broad radial stripes, potentially implicated in the formation of liver lobes. This retrospective clonal analysis gives novel insights into clonal origins, cell behavior of progenitors and distinct properties of endoderm cells that underlie the formation and morphogenesis of the liver.


Asunto(s)
Tipificación del Cuerpo/fisiología , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/citología , Hígado/embriología , Organogénesis/fisiología , Animales , Proliferación Celular , Células Cultivadas , Técnicas de Sustitución del Gen , Operón Lac/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Estudios Retrospectivos , Células Madre/citología , beta-Galactosidasa/genética
6.
Proc Natl Acad Sci U S A ; 112(5): 1446-51, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605943

RESUMEN

Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.


Asunto(s)
Corazón/embriología , Músculo Esquelético/embriología , Cuello/embriología , Animales , Redes Reguladoras de Genes , Ratones , Ratones Transgénicos , Somitos
7.
Semin Cell Dev Biol ; 44: 115-25, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26424495

RESUMEN

Like other subclasses within the PAX transcription factor family, PAX3 and PAX7 play important roles in the emergence of a number of different tissues during development. PAX3 regulates neural crest and, together with its orthologue PAX7, is also expressed in parts of the central nervous system. In this chapter we will focus on their role in skeletal muscle. Both factors are key regulators of myogenesis where Pax3 plays a major role during early skeletal muscle formation in the embryo while Pax7 predominates during post-natal growth and muscle regeneration in the adult. We review the expression and functions of these factors in the myogenic context. We also discuss mechanistic aspects of PAX3/7 function and modulation of their activity by interaction with other proteins, as well as the post-transcriptional and transcriptional regulation of their expression.


Asunto(s)
Desarrollo de Músculos/fisiología , Factor de Transcripción PAX7/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/fisiología
8.
Proc Natl Acad Sci U S A ; 111(24): 8844-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24927569

RESUMEN

Multipotent Pax3-positive (Pax3(+)) cells in the somites give rise to skeletal muscle and to cells of the vasculature. We had previously proposed that this cell-fate choice depends on the equilibrium between Pax3 and Foxc2 expression. In this study, we report that the Notch pathway promotes vascular versus skeletal muscle cell fates. Overactivating the Notch pathway specifically in Pax3(+) progenitors, via a conditional Pax3(NICD) allele, results in an increase of the number of smooth muscle and endothelial cells contributing to the aorta. At limb level, Pax3(+) cells in the somite give rise to skeletal muscles and to a subpopulation of endothelial cells in blood vessels of the limb. We now demonstrate that in addition to the inhibitory role of Notch signaling on skeletal muscle cell differentiation, the Notch pathway affects the Pax3:Foxc2 balance and promotes the endothelial versus myogenic cell fate, before migration to the limb, in multipotent Pax3(+) cells in the somite of the mouse embryo.


Asunto(s)
Células Endoteliales/citología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción Paired Box/genética , Receptores Notch/metabolismo , Somitos/embriología , Alelos , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Femenino , Factores de Transcripción Forkhead/genética , Vectores Genéticos , Masculino , Ratones , Ratones Transgénicos , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Factor de Transcripción PAX3 , Transducción de Señal
9.
Hum Mol Genet ; 23(19): 5087-101, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24821700

RESUMEN

Congenital heart defects affect at least 0.8% of newborn children and are a major cause of lethality prior to birth. Malformations of the arterial pole are particularly frequent. The myocardium at the base of the pulmonary trunk and aorta and the arterial tree associated with these great arteries are derived from splanchnic mesoderm of the second heart field (SHF), an important source of cardiac progenitor cells. These cells are controlled by a gene regulatory network that includes Fgf8, Fgf10 and Tbx1. Prdm1 encodes a transcriptional repressor that we show is also expressed in the SHF. In mouse embryos, mutation of Prdm1 affects branchial arch development and leads to persistent truncus arteriosus (PTA), indicative of neural crest dysfunction. Using conditional mutants, we show that this is not due to a direct function of Prdm1 in neural crest cells. Mutation of Prdm1 in the SHF does not result in PTA, but leads to arterial pole defects, characterized by mis-alignment or reduction of the aorta and pulmonary trunk, and abnormalities in the arterial tree, defects that are preceded by a reduction in outflow tract size and loss of caudal pharyngeal arch arteries. These defects are associated with a reduction in proliferation of progenitor cells in the SHF. We have investigated genetic interactions with Fgf8 and Tbx1, and show that on a Tbx1 heterozygote background, conditional Prdm1 mutants have more pronounced arterial pole defects, now including PTA. Our results identify PRDM1 as a potential modifier of phenotypic severity in TBX1 haploinsufficient DiGeorge syndrome patients.


Asunto(s)
Epistasis Genética , Corazón/embriología , Mesodermo/metabolismo , Morfogénesis/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Animales , Aorta Torácica/embriología , Aorta Torácica/metabolismo , Aorta Torácica/patología , Región Branquial/irrigación sanguínea , Región Branquial/embriología , Región Branquial/metabolismo , Región Branquial/patología , Embrión de Mamíferos , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genotipo , Masculino , Ratones , Ratones Transgénicos , Mutación , Organogénesis , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
10.
Development ; 140(2): 395-404, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250213

RESUMEN

Anisotropies that underlie organ morphogenesis have been quantified in 2D, taking advantage of a reference axis. However, morphogenesis is a 3D process and it remains a challenge to analyze cell polarities in 3D. Here, we have designed a novel procedure that integrates multidisciplinary tools, including image segmentation, statistical analyses, axial clustering and correlation analysis. The result is a sensitive and unbiased assessment of the significant alignment of cell orientations in 3D, compared with a random axial distribution. Taking the mouse heart as a model, we validate the procedure at the fetal stage, when cardiomyocytes are known to be aligned. At the embryonic stage, our study reveals that ventricular cells are already coordinated locally. The centrosome-nucleus axes and the cell division axes are biased in a plane parallel to the outer surface of the heart, with a minor transmural component. We show further alignment of these axes locally in the plane of the heart surface. Our method is generally applicable to other sets of vectors or axes in 3D tissues to map the regions where they show significant alignment.


Asunto(s)
Biología Evolutiva/métodos , Corazón/embriología , Imagenología Tridimensional/métodos , Animales , Anisotropía , Tipificación del Cuerpo , División Celular , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Procesamiento de Imagen Asistido por Computador , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/citología , Factores de Tiempo
11.
PLoS Genet ; 9(4): e1003425, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637613

RESUMEN

In mammals, several genetic pathways have been characterized that govern engagement of multipotent embryonic progenitors into the myogenic program through the control of the key myogenic regulatory gene Myod. Here we demonstrate the involvement of Six homeoproteins. We first targeted into a Pax3 allele a sequence encoding a negative form of Six4 that binds DNA but cannot interact with essential Eya co-factors. The resulting embryos present hypoplasic skeletal muscles and impaired Myod activation in the trunk in the absence of Myf5/Mrf4. At the axial level, we further show that Myod is still expressed in compound Six1/Six4:Pax3 but not in Six1/Six4:Myf5 triple mutant embryos, demonstrating that Six1/4 participates in the Pax3-Myod genetic pathway. Myod expression and head myogenesis is preserved in Six1/Six4:Myf5 triple mutant embryos, illustrating that upstream regulators of Myod in different embryonic territories are distinct. We show that Myod regulatory regions are directly controlled by Six proteins and that, in the absence of Six1 and Six4, Six2 can compensate.


Asunto(s)
Proteínas de Homeodominio , Desarrollo de Músculos , Animales , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Factores de Transcripción/genética
12.
Proc Natl Acad Sci U S A ; 109(45): 18273-80, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23093675

RESUMEN

During cardiogenesis, Fibroblast Growth Factor (Fgf10) is expressed in the anterior second heart field. Together with Fibroblast growth factor 8 (Fgf8), Fgf10 promotes the proliferation of these cardiac progenitor cells that form the arterial pole of the heart. We have identified a 1.7-kb region in the first intron of Fgf10 that is necessary and sufficient to direct transgene expression in this cardiac context. The 1.7-kb sequence is directly controlled by T-box transcription factor 1 (Tbx1) in anterior second heart field cells that contribute to the outflow tract. It also responds to both NK2 transcription factor related, locus 5 (Nkx2-5) and ISL1 transcription factor, LIM/homeodomain (Islet1), acting through overlapping sites. Mutation of these sites reduces transgene expression in the anterior second heart field where the Fgf10 regulatory element is activated by Islet1 via direct binding in vivo. Analysis of the response to Nkx2-5 loss- and Isl1 gain-of-function genetic backgrounds indicates that the observed up-regulation of its activity in Nkx2-5 mutant hearts, reflecting that of Fgf10, is due to the absence of Nkx2-5 repression and to up-regulation of Isl1, normally repressed in the myocardium by Nkx2-5. ChIP experiments show strong binding of Nkx2-5 in differentiated myocardium. Molecular and genetic analysis of the Fgf10 cardiac element therefore reveals how key cardiac transcription factors orchestrate gene expression in the anterior second heart field and how genes, such as Fgf10, normally expressed in the progenitor cell population, are repressed when these cells enter the heart and differentiate into myocardium. Our findings provide a paradigm for transcriptional mechanisms that underlie the changes in regulatory networks during the transition from progenitor state to that of the differentiated tissue.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Cambio/genética , Corazón/embriología , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Emparejamiento Base/genética , Secuencia de Bases , Sitios de Unión , Cromosomas Artificiales Bacterianos/genética , Regulación hacia Abajo/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Datos de Secuencia Molecular , Miocardio/metabolismo , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Transcripción Genética , Transgenes/genética
13.
Differentiation ; 88(1): 13-15, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25113967

RESUMEN

John Gurdon has made major contributions to developmental biology in addition to his Nobel prize winning work on nuclear reprogramming. With the frog, Xenopus, as a vertebrate model, his work on mesoderm induction led him to identify a community effect required for tissue differentiation after progenitor cells have entered a specific mesodermal programme. It is in the context of this biologically important concept, with myogenesis as an example, that we have had most scientific exchanges. Here I trace my contacts with him, from an interest in histone regulation of gene expression and reprogramming, to myogenic determination factors as markers of early mesodermal induction, to the role of the community effect in the spatiotemporal control of skeletal muscle formation. I also recount some personal anecdotes from encounters in Oxford, Paris and Cambridge, to illustrate my appreciation of him as a scientist and a colleague.


Asunto(s)
Mesodermo/citología , Animales , Diferenciación Celular , Historia del Siglo XX , Historia del Siglo XXI , Xenopus
14.
Dev Biol ; 376(2): 236-44, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23384562

RESUMEN

The Myf5 gene plays an important role in myogenic determination during mouse embryo development. Multiple genomic regions of the Mrf4-Myf5 locus have been characterised as enhancer sequences responsible for the complex spatiotemporal expression of the Myf5 gene at the onset of myogenesis. These include an enhancer sequence, located at -111 kb upstream of the Myf5 transcription start site, which is responsible of Myf5 activation in ventral somitic domains (Ribas et al., 2011. Dev. Biol. 355, 372-380). We show that the -111 kb-Myf5 enhancer also directs transgene expression in some limb muscles, and is active at foetal as well as embryonic stages. We have carried out further characterisation of the regulation of this enhancer and show that the paired-box Pax3 transcription factor binds to it in vitro as in vivo, and that Pax binding sites are essential for its activity. This requirement is independent of the previously reported regulation by TEAD transcription factors. Six1/4 which, like Pax3, are important upstream regulators of myogenesis, also bind in vivo to sites in the -111 kb-Myf5 enhancer and modulate its activity. The -111 kb-Myf5 enhancer therefore shares common functional characteristics with another Myf5 regulatory sequence, the hypaxial and limb 145 bp-Myf5 enhancer, both being directly regulated in vivo by Pax3 and Six1/4 proteins. However, in the case of the -111 kb-Myf5 enhancer, Six has less effect and we conclude that Pax regulation plays a major role in controlling this aspect of the Myf5 gene expression at the onset of myogenesis in the embryo.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Desarrollo de Músculos , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/fisiología , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/fisiología , Transactivadores/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Factor de Transcripción COUP II/metabolismo , Elementos de Facilitación Genéticos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Factor de Transcripción PAX3 , Plásmidos/metabolismo , Homología de Secuencia de Ácido Nucleico
15.
Circ Res ; 111(10): 1313-22, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22855565

RESUMEN

RATIONALE: Genetic tracing experiments and cell lineage analyses are complementary approaches that give information about the progenitor cells of a tissue. Approaches based on gene expression have led to conflicting views about the origin of the venous pole of the heart. Whereas the heart forms from 2 sources of progenitor cells, the first and second heart fields, genetic tracing has suggested a distinct origin for caval vein myocardium, from a proposed third heart field. OBJECTIVE: To determine the cell lineage history of the myocardium at the venous pole of the heart. METHODS AND RESULTS: We used retrospective clonal analyses to investigate lineage segregation for myocardium at the venous pole of the mouse heart, independent of gene expression. CONCLUSIONS: Our lineage analysis unequivocally shows that caval vein and atrial myocardium share a common origin and demonstrates a clonal relationship between the pulmonary vein and progenitors of the left venous pole. Clonal characteristics give insight into the development of the veins. Unexpectedly, we found a lineage relationship between the venous pole and part of the arterial pole, which is derived exclusively from the second heart field. Integration of results from genetic tracing into the lineage tree adds a further temporal dimension to this reconstruction of the history of venous myocardium and the arterial pole.


Asunto(s)
Linaje de la Célula/fisiología , Células Madre Embrionarias/citología , Corazón/embriología , Miocardio/citología , Organogénesis/fisiología , Animales , Células Clonales/citología , Células Clonales/fisiología , Células Madre Embrionarias/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Masculino , Ratones , Ratones Mutantes , Venas Pulmonares/citología , Venas Pulmonares/embriología , Vena Cava Inferior/citología , Vena Cava Inferior/embriología , Vena Cava Superior/citología , Vena Cava Superior/embriología
16.
Circ Res ; 111(10): 1323-35, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22955731

RESUMEN

RATIONALE: The second heart field (SHF) contains progenitors of all heart chambers, excluding the left ventricle. The SHF is patterned, and the anterior region is known to be destined to form the outflow tract and right ventricle. OBJECTIVE: The aim of this study was to map the fate of the posterior SHF (pSHF). METHODS AND RESULTS: We examined the contribution of pSHF cells, labeled by lipophilic dye at the 4- to 6-somite stage, to regions of the heart at 20 to 25 somites, using mouse embryo culture. Cells more cranial in the pSHF contribute to the atrioventricular canal (AVC) and atria, whereas those more caudal generate the sinus venosus, but there is intermixing of fate throughout the pSHF. Caudal pSHF contributes symmetrically to the sinus venosus, but the fate of cranial pSHF is left/right asymmetrical. Left pSHF moves to dorsal left atrium and superior AVC, whereas right pSHF contributes to right atrium, ventral left atrium, and inferior AVC. Retrospective clonal analysis shows the relationships between AVC and atria to be clonal and that right and left progenitors diverge before first and second heart lineage separation. Cranial pSHF cells also contribute to the outflow tract: proximal and distal at 4 somites, and distal only at 6 somites. All outflow tract-destined cells are intermingled with those that will contribute to inflow and AVC. CONCLUSIONS: These observations show asymmetric fate of the pSHF, resulting in unexpected left/right contributions to both poles of the heart and can be integrated into a model of the morphogenetic movement of cells during cardiac looping.


Asunto(s)
Células Madre Embrionarias/citología , Corazón/embriología , Corazón/fisiología , Organogénesis/fisiología , Animales , Animales no Consanguíneos , Seno Coronario/citología , Seno Coronario/embriología , Técnicas de Cultivo de Embriones , Células Madre Embrionarias/fisiología , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Operón Lac , Ratones , Ratones Transgénicos , Somitos/citología , Somitos/embriología
17.
Dev Dyn ; 242(6): 665-77, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23526457

RESUMEN

BACKGROUND: The ventricular conduction system (VCS) coordinates the heartbeat and is composed of central components (the atrioventricular node, bundle, and right and left bundle branches) and a peripheral Purkinje fiber network. Conductive myocytes develop from common progenitor cells with working myocytes in a bimodal process of lineage restriction followed by limited outgrowth. The lineage relationship between progenitor cells giving rise to different components of the VCS is unclear. RESULTS: Cell lineage contributions to different components of the VCS were analysed by a combination of retrospective clonal analysis, regionalized transgene expression studies, and genetic tracing experiments using Connexin40-GFP mice that precisely delineate the VCS. Analysis of a library of hearts containing rare large clusters of clonally related myocytes identifies two VCS lineages encompassing either the right Purkinje fiber network or left bundle branch. Both lineages contribute to the atrioventricular bundle and right bundle branch that segregate early from working myocytes. Right and left VCS lineages share the transcriptional program of the respective ventricular working myocytes and genetic tracing experiments discount alternate progenitor cell contributions to the VCS. CONCLUSIONS: The mammalian VCS is comprised of cells derived from two lineages, supporting a dual contribution of first and second heart field progenitor cells.


Asunto(s)
Linaje de la Célula , Conexinas/genética , Sistema de Conducción Cardíaco/embriología , Ventrículos Cardíacos/embriología , Células Madre/citología , Alelos , Animales , Fascículo Atrioventricular/metabolismo , Conexinas/fisiología , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Microscopía Fluorescente , Miocardio/citología , Miocitos Cardíacos/citología , Factores de Tiempo , Transcripción Genética , Transgenes , Proteína alfa-5 de Unión Comunicante
18.
C R Biol ; 346(S2): 27-35, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38124533

RESUMEN

I joined François Gros' laboratory as a postdoc at the end of 1971 and continued working with him as a research scientist until 1987, when I became an independent group leader at the Institut Pasteur. In the early 1970s, it was the beginning of research in his lab on muscle cell differentiation, as a model eukaryotic system for studying mRNAs and gene regulation. In this article, I recount our work on myogenesis and mention the other research themes in his lab and the people concerned. I remained in close contact with François and pay tribute to him as a major figure in French science and as my personal mentor who provided me with constant support.


J'ai rejoint le laboratoire de François Gros en tant que postdoctorante à la fin de l'année 1971 et j'ai continué à travailler avec lui en tant que chercheuse jusqu'en 1987, date à laquelle je suis devenue chef de groupe indépendante à l'Institut Pasteur. Au début des années 1970, son laboratoire a commencé à étudier la différenciation des cellules musculaires, comme un système modèle eucaryote permettant d'étudier les ARNm et la régulation des gènes. Dans cet article, je retrace nos travaux sur la myogenèse et mentionne les autres thèmes de recherche de son laboratoire ainsi que les personnes concernées. Je suis restée en contact étroit avec François et je lui rends hommage en tant que figure majeure de la science française et en tant que mentor qui m'a apporté un soutien constant.

19.
Mol Biol Evol ; 29(10): 3181-91, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22522309

RESUMEN

Muscles are composed of multinucleated muscle fibers with different contractile and physiological properties, which result from specific slow or fast gene expression programs in the differentiated muscle cells. In the zebra fish embryo, the slow program is under the control of Hedgehog signaling from the notochord and floor plate. This pathway activates the expression of the conserved transcriptional repressor, Prdm1 (Blimp1), which in turn represses the fast program and promotes the slow program in adaxial cells of the somite and their descendants. In the mouse embryo, myogenesis is also initiated in the myotomal compartment of the somite, but the slow muscle program is not confined to a specific subset of cells. We now show that Prdm1 is expressed in the first differentiated myocytes of the early myotome from embryonic day (E)9.5-E11.5. During this period, muscle formation depends on the myogenic regulatory factors, Myf5 and Mrf4. In their absence, Prdm1 is not activated, in apparent contrast to zebra fish where Prdm1 is expressed in the absence of Myf5 and MyoD that drive myogenesis in adaxial cells. However, as in zebra fish, Prdm1 expression in the mouse myotome does not occur in the absence of Hedgehog signaling. Analysis of the muscle phenotype of Prdm1 mutant embryos shows that myogenesis appears to proceed normally. Notably, there is no requirement for Prdm1 activation of the slow muscle program in the mouse myotome. Furthermore, the gene for the transcriptional repressor, Sox6, which is repressed by Prdm1 to permit slow muscle differentiation in zebra fish, is not expressed in the mouse myotome. We propose that the lack of functional conservation for mouse Prdm1, that can nevertheless partially rescue the adaxial cells of zebra fish Prdm1 mutants, reflects differences in the evolution of the role of key regulators such as Prdm1 or Sox6, in initiating the onset of the slow muscle program, between teleosts and mammals.


Asunto(s)
Secuencia Conservada/genética , Embrión de Mamíferos/metabolismo , Evolución Molecular , Desarrollo de Músculos/genética , Fibras Musculares de Contracción Lenta/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Genes Dominantes/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Células Musculares/citología , Células Musculares/metabolismo , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/citología , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
20.
J Cell Sci ; 124(Pt 23): 3980-8, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22159413

RESUMEN

We report expression of Pax3, an important regulator of skeletal muscle stem cell behaviour, in the brachial and femoral arteries of adult mice. In these contractile arteries of the limb, but not in the elastic arteries of the trunk, bands of GFP-positive cells were observed in Pax3(GFP/+) mice. Histological and biochemical examination of the vessels, together with clonal analysis after purification of Pax3-GFP-positive cells by flow cytometry, established their vascular smooth muscle identity. These blood-vessel-derived cells do not respond to inducers of other mesodermal cell types, such as bone, however, they can contribute to muscle fibre formation when co-cultured with skeletal muscle cells. This myogenic conversion depends on the expression of Pax3, but is rare and non-cell autonomous as it requires cell fusion. Myocardin, which promotes acquisition of a mature smooth muscle phenotype in these Pax3-GFP-positive cells, antagonises their potential for skeletal muscle differentiation. Genetic manipulation shows that myocardin is, however, positively regulated by Pax3, unlike genes for other myocardin-related factors, MRTFA, MRTFB or SRF. Expression of Pax3 overlaps with that reported for Msx2, which is required for smooth muscle differentiation of blood vessel-derived multipotent mesoangioblasts. These observations are discussed with respect to the origin and function of Pax3-expressing cells in blood vessels, and more general questions of cell fate determination and adult cell plasticity and reprogramming.


Asunto(s)
Arteria Braquial/metabolismo , Arteria Femoral/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción Paired Box/metabolismo , Animales , Arteria Braquial/citología , Diferenciación Celular , Técnicas de Cocultivo , Arteria Femoral/citología , Citometría de Flujo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Transactivadores/genética , Transactivadores/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA