Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 19(1): 41, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750380

RESUMEN

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Asunto(s)
Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Control de Insectos , Muscidae/genética , Animales , Reproducción/genética
3.
Parasit Vectors ; 7: 456, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25266983

RESUMEN

BACKGROUND: Acaricide resistant Rhipicephalus microplus populations have become a major problem for many cattle producing areas of the world. Pyrethroid resistance in arthropods is typically associated with mutations in domains I, II, III, and IV of voltage-gated sodium channel genes. In R. microplus, known resistance mutations include a domain II change (C190A) in populations from Australia, Africa, and South America and a domain III mutation (T2134A) that only occurs in Mexico and the U.S. METHODS: We investigated pyrethroid resistance in cattle fever ticks from Texas and Mexico by estimating resistance levels in field-collected ticks using larval packet discriminating dose (DD) assays and identifying single nucleotide polymorphisms (SNPs) in the para-sodium channel gene that associated with resistance. We then developed qPCR assays for three SNPs and screened a larger set of 1,488 R. microplus ticks, representing 77 field collections and four laboratory strains, for SNP frequency. RESULTS: We detected resistance SNPs in 21 of 68 U.S. field collections and six of nine Mexico field collections. We expected to identify the domain III SNP (T2134A) at a high frequency; however, we only found it in three U.S. collections. A much more common SNP in the U.S. (detected in 19 of 21 field collections) was the C190A domain II mutation, which has never before been reported from North America. We also discovered a novel domain II SNP (T170C) in ten U.S. and two Mexico field collections. The T170C transition mutation has previously been associated with extreme levels of resistance (super-knockdown resistance) in insects. We found a significant correlation (r = 0.81) between the proportion of individuals in field collections that carried any two resistance SNPs and the percent survivorship of F1 larvae from these collections in DD assays. This relationship is accurately predicted by a simple linear regression model (R2 = 0.6635). CONCLUSIONS: These findings demonstrate that multiple mutations in the para-sodium channel gene independently associate with pyrethroid resistance in R. microplus ticks, which is likely a consequence of human-induced selection.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Insecticidas , Piretrinas , Rhipicephalus/genética , Canales de Sodio/genética , Infestaciones por Garrapatas/veterinaria , Animales , Secuencia de Bases , Bovinos , Enfermedades de los Bovinos/prevención & control , Femenino , Genotipo , Resistencia a los Insecticidas/genética , Larva , Modelos Lineales , México , Datos de Secuencia Molecular , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Infestaciones por Garrapatas/prevención & control , Estados Unidos
4.
Parasit Vectors ; 7: 188, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24742041

RESUMEN

BACKGROUND: Rhipicephalus (Boophilus) microplus is a highly-invasive tick that transmits the cattle parasites (Babesia bovis and B. bigemina) that cause cattle fever. R. microplus and Babesia are endemic in Mexico and ticks persist in the United States inside a narrow tick eradication quarantine area (TEQA) along the Rio Grande. This containment area is threatened by unregulated movements of illegal cattle and wildlife like white-tailed deer (WTD; Odocoileus virginianus). METHODS: Using 11 microsatellite loci we genotyped 1,247 R. microplus from 63 Texas collections, including outbreak infestations from outside the TEQA. We used population genetic analyses to test hypotheses about ecological persistence, tick movement, and impacts of the eradication program in southern Texas. We tested acaricide resistance with larval packet tests (LPTs) on 47 collections. RESULTS: LPTs revealed acaricide resistance in 15/47 collections (32%); 11 were outside the TEQA and three were resistant to multiple acaricides. Some collections highly resistant to permethrin were found on cattle and WTD. Analysis of genetic differentiation over time at seven properties revealed local gene pools with very low levels of differentiation (FST 0.00-0.05), indicating persistence over timespans of up to 29 months. However, in one neighborhood differentiation varied greatly over a 12-month period (FST 0.03-0.13), suggesting recurring immigration from distinct sources as another persistence mechanism. Ticks collected from cattle and WTD at the same location are not differentiated (FST = 0), implicating ticks from WTD as a source of ticks on cattle (and vice versa) and emphasizing the importance of WTD to tick control strategies. We identified four major genetic groups (K = 4) using Bayesian population assignment, suggesting multiple introductions to Texas. CONCLUSIONS: Two dispersal mechanisms give rise to new tick infestations: 1) frequent short-distance dispersal from the TEQA; and 2) rare long-distance, human-mediated dispersal from populations outside our study area, probably Mexico. The threat of cattle fever tick transport into Texas is increased by acaricide resistance and the ability of R. microplus to utilize WTD as an alternate host. Population genetic analyses may provide a powerful tool for tracking invasions in other parts of the world where these ticks are established.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Ciervos/parasitología , Especies Introducidas , Rhipicephalus/fisiología , Infestaciones por Garrapatas/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Texas/epidemiología , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA