Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328915

RESUMEN

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Productos del Gen gag/genética , Cuerpos Multivesiculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , ARN Mensajero/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Productos del Gen gag/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Terminales Presinápticos/fisiología , Unión Proteica , Dominios Proteicos , Retroelementos/genética
2.
Cell ; 149(4): 832-46, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579286

RESUMEN

Localized protein synthesis requires assembly and transport of translationally silenced ribonucleoprotein particles (RNPs), some of which are exceptionally large. Where in the cell such large RNP granules first assemble was heretofore unknown. We previously reported that during synapse development, a fragment of the Wnt-1 receptor, DFrizzled2, enters postsynaptic nuclei where it forms prominent foci. Here we show that these foci constitute large RNP granules harboring synaptic protein transcripts. These granules exit the nucleus by budding through the inner and the outer nuclear membranes in a nuclear egress mechanism akin to that of herpes viruses. This budding involves phosphorylation of A-type lamin, a protein linked to muscular dystrophies. Thus nuclear envelope budding is an endogenous nuclear export pathway for large RNP granules.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Frizzled/metabolismo , Lamina Tipo A/metabolismo , Unión Neuromuscular/metabolismo , Membrana Nuclear/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Drosophila melanogaster/ultraestructura , Humanos , Larva/metabolismo , Larva/ultraestructura , Fibras Musculares Esqueléticas/ultraestructura , Membrana Nuclear/ultraestructura , Transducción de Señal
3.
Cell ; 139(2): 393-404, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837038

RESUMEN

Wnts play pivotal roles during development and in the mature nervous system. However, the mechanism by which Wnts traffic between cells has remained elusive. Here we demonstrate a mechanism of Wnt transmission through release of exosome-like vesicles containing the Wnt-binding protein Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt). We show that at the Drosophila larval neuromuscular junction (NMJ), presynaptic vesicular release of Evi is required for the secretion of the Wnt, Wingless (Wg). We also show that Evi acts cell-autonomously in the postsynaptic Wnt-receiving cell to target dGRIP, a Wg-receptor-interacting protein, to postsynaptic sites. Upon Evi loss of function, dGRIP is not properly targeted to synaptic sites, interfering with postsynaptic Wnt signal transduction. These findings uncover a previously unknown cellular mechanism by which a secreted Wnt is transported across synapses by Evi-containing vesicles and reveal trafficking functions of Evi in both the Wnt-producing and the Wnt-receiving cells. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transducción de Señal , Vesículas Sinápticas/metabolismo , Proteína Wnt1/metabolismo , Animales , Proteínas Portadoras/metabolismo , Receptores Frizzled/metabolismo , Proteínas de la Membrana , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular , Transporte de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis
4.
Nat Rev Neurosci ; 17(3): 160-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26891626

RESUMEN

Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system.


Asunto(s)
Comunicación Celular/fisiología , Vesículas Extracelulares/fisiología , Sistema Nervioso/citología , Neuronas/fisiología , Animales , Humanos , Neuroglía/fisiología
5.
J Neurosci ; 34(8): 2910-20, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553932

RESUMEN

Glial cells are emerging as important regulators of synapse formation, maturation, and plasticity through the release of secreted signaling molecules. Here we use chromatin immunoprecipitation along with Drosophila genomic tiling arrays to define potential targets of the glial transcription factor Reversed polarity (Repo). Unexpectedly, we identified wingless (wg), a secreted morphogen that regulates synaptic growth at the Drosophila larval neuromuscular junction (NMJ), as a potential Repo target gene. We demonstrate that Repo regulates wg expression in vivo and that local glial cells secrete Wg at the NMJ to regulate glutamate receptor clustering and synaptic function. This work identifies Wg as a novel in vivo glial-secreted factor that specifically modulates assembly of the postsynaptic signaling machinery at the Drosophila NMJ.


Asunto(s)
Neuroglía/fisiología , Unión Neuromuscular/fisiología , Receptores de Glutamato/metabolismo , Sinapsis/fisiología , Proteínas Wnt/fisiología , Animales , Inmunoprecipitación de Cromatina , Drosophila , Proteínas de Drosophila/genética , Fenómenos Electrofisiológicos/fisiología , Proteínas de Homeodominio/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Confocal , Interferencia de ARN/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
6.
PLoS Biol ; 10(12): e1001450, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23271954

RESUMEN

Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.


Asunto(s)
Bases de Datos como Asunto , Exosomas/metabolismo , Espacio Extracelular/metabolismo , Investigación , Apoptosis
7.
Nat Rev Neurosci ; 10(9): 627-34, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19693027

RESUMEN

Although WNTs have been long thought of as regulators of cell fate, recent studies highlight their involvement in crucial aspects of synaptic development in the nervous system. Particularly compelling are recent studies of the neuromuscular junction in nematodes, insects, fish and mammals. These studies place WNTs as major determinants of synapse differentiation and neurotransmitter receptor clustering.


Asunto(s)
Unión Neuromuscular/fisiología , Sinapsis/fisiología , Proteínas Wnt/fisiología , Animales , Humanos , Unión Neuromuscular/química , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Sinapsis/química , Transmisión Sináptica/fisiología , Proteínas Wnt/química
8.
J Neurosci ; 32(18): 6312-22, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22553037

RESUMEN

Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive-feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs, suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell-autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli.


Asunto(s)
Drosophila/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Octopamina/metabolismo , Receptores de Amina Biogénica/metabolismo , Transmisión Sináptica/fisiología , Animales , Sinapsis/fisiología
9.
J Biol Chem ; 287(20): 16820-34, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22437826

RESUMEN

Wnt signaling plays critical roles during synaptic development and plasticity. However, the mechanisms by which Wnts are released and travel to target cells are unresolved. During synaptic development, the secretion of Drosophila Wnt1, Wingless, requires the function of Evenness Interrupted (Evi)/Wls, a Wingless-binding protein that is secreted along with Wingless at the neuromuscular junction. Given that Evi is a transmembrane protein, these studies suggested the presence of a novel vesicular mechanism of trans-synaptic communication, potentially in the form of exosomes. To establish the mechanisms for the release of Evi vesicles, we used a dsRNA assay in cultured cells to screen for genes that when down-regulated prevent the release of Evi vesicles. We identified two proteins, Rab11 and Syntaxin 1A (Syx1A), that were required for Evi vesicle release. To determine whether the same mechanisms were used in vivo at the neuromuscular junction, we altered the activity of Rab11 and Syx1A in motoneurons and determined the impact on Evi release. We found that Syx1A, Rab11, and its effector Myosin5 were required for proper Evi vesicle release. Furthermore, ultrastructural analysis of synaptic boutons demonstrated the presence of multivesicular bodies, organelles involved in the production and release of exosomes, and these multivesicular bodies contained Evi. We also used mass spectrometry, electron microscopy, and biochemical techniques to characterize the exosome fraction from cultured cells. Our studies revealed that secreted Evi vesicles show remarkable conservation with exosomes in other systems. In summary, our observations unravel some of the in vivo mechanisms required for Evi vesicle release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Exosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Animales , Transporte Biológico/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Exosomas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Unión Neuromuscular/genética , Vesículas Sinápticas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
10.
Development ; 137(18): 3067-77, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20702563

RESUMEN

The inner side of the nuclear envelope (NE) is lined with lamins, a meshwork of intermediate filaments that provides structural support for the nucleus and plays roles in many nuclear processes. Lamins, classified as A- or B-types on the basis of biochemical properties, have a conserved globular head, central rod and C-terminal domain that includes an Ig-fold structural motif. In humans, mutations in A-type lamins give rise to diseases that exhibit tissue-specific defects, such as Emery-Dreifuss muscular dystrophy. Drosophila is being used as a model to determine tissue-specific functions of A-type lamins in development, with implications for understanding human disease mechanisms. The GAL4-UAS system was used to express wild-type and mutant forms of Lamin C (the presumed Drosophila A-type lamin), in an otherwise wild-type background. Larval muscle-specific expression of wild type Drosophila Lamin C caused no overt phenotype. By contrast, larval muscle-specific expression of a truncated form of Lamin C lacking the N-terminal head (Lamin C DeltaN) caused muscle defects and semi-lethality, with adult 'escapers' possessing malformed legs. The leg defects were due to a lack of larval muscle function and alterations in hormone-regulated gene expression. The consequences of Lamin C association at a gene were tested directly by targeting a Lamin C DNA-binding domain fusion protein upstream of a reporter gene. Association of Lamin C correlated with localization of the reporter gene at the nuclear periphery and gene repression. These data demonstrate connections among the Drosophila A-type lamin, hormone-induced gene expression and muscle function.


Asunto(s)
Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Lamina Tipo A/metabolismo , Músculos/fisiopatología , Animales , Núcleo Celular/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Ecdisona/metabolismo , Lamina Tipo A/genética , Transducción de Señal
11.
J Neurosci ; 31(45): 16045-8, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22072654

RESUMEN

How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.


Asunto(s)
Núcleo Celular/fisiología , Neuronas/citología , Transducción de Señal/fisiología , Sinapsis/fisiología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Animales
12.
PLoS Biol ; 7(8): e1000184, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19707574

RESUMEN

Synapse remodeling is an extremely dynamic process, often regulated by neural activity. Here we show during activity-dependent synaptic growth at the Drosophila NMJ many immature synaptic boutons fail to form stable postsynaptic contacts, are selectively shed from the parent arbor, and degenerate or disappear from the neuromuscular junction (NMJ). Surprisingly, we also observe the widespread appearance of presynaptically derived "debris" during normal synaptic growth. The shedding of both immature boutons and presynaptic debris is enhanced by high-frequency stimulation of motorneurons, indicating that their formation is modulated by neural activity. Interestingly, we find that glia dynamically invade the NMJ and, working together with muscle cells, phagocytose shed presynaptic material. Suppressing engulfment activity in glia or muscle by disrupting the Draper/Ced-6 pathway results in a dramatic accumulation of presynaptic debris, and synaptic growth in turn is severely compromised. Thus actively growing NMJ arbors appear to constitutively generate an excessive number of immature boutons, eliminate those that are not stabilized through a shedding process, and normal synaptic expansion requires the continuous clearance of this material by both glia and muscle cells.


Asunto(s)
Músculos/citología , Neuroglía/citología , Unión Neuromuscular/citología , Sinapsis/fisiología , Animales , Drosophila/citología , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Músculos/fisiología , Neuroglía/fisiología , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinapsis/metabolismo , Transmisión Sináptica
13.
Neuron ; 55(5): 741-55, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17785181

RESUMEN

Neurexins have been proposed to function as major mediators of the coordinated pre- and postsynaptic apposition. However, key evidence for this role in vivo has been lacking, particularly due to gene redundancy. Here, we have obtained null mutations in the single Drosophila neurexin gene (dnrx). dnrx loss of function prevents the normal proliferation of synaptic boutons at glutamatergic neuromuscular junctions, while dnrx gain of function in neurons has the opposite effect. DNRX mostly localizes to the active zone of presynaptic terminals. Conspicuously, dnrx null mutants display striking defects in synaptic ultrastructure, with the presence of detachments between pre- and postsynaptic membranes, abnormally long active zones, and increased number of T bars. These abnormalities result in corresponding alterations in synaptic transmission with reduced quantal content. Together, our results provide compelling evidence for an in vivo role of neurexins in the modulation of synaptic architecture and adhesive interactions between pre- and postsynaptic compartments.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Unión Neuromuscular/anomalías , Sinapsis/metabolismo , Transmisión Sináptica/genética , Animales , Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Mutación/genética , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Homología de Secuencia de Aminoácido , Sinapsis/genética , Sinapsis/ultraestructura , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura
14.
Hum Mol Genet ; 17(2): 266-80, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17947296

RESUMEN

Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by selective death of motor neurons leading to spasticity, muscle wasting and paralysis. Human VAMP-associated protein B (hVAPB) is the causative gene of a clinically diverse group of MNDs including amyotrophic lateral sclerosis (ALS), atypical ALS and late-onset spinal muscular atrophy. The pathogenic mutation is inherited in a dominant manner. Drosophila VAMP-associated protein of 33 kDa A (DVAP-33A) is the structural homologue of hVAPB and regulates synaptic remodeling by affecting the size and number of boutons at neuromuscular junctions. Associated with these structural alterations are compensatory changes in the physiology and ultrastructure of synapses, which maintain evoked responses within normal boundaries. DVAP-33A and hVAPB are functionally interchangeable and transgenic expression of mutant DVAP-33A in neurons recapitulates major hallmarks of the human diseases including locomotion defects, neuronal death and aggregate formation. Aggregate accumulation is accompanied by a depletion of the endogenous protein from its normal localization. These findings pinpoint to a possible role of hVAPB in synaptic homeostasis and emphasize the relevance of our fly model in elucidating the patho-physiology underlying motor neuron degeneration in humans.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Enfermedad de la Neurona Motora/metabolismo
15.
J Neurosci ; 28(1): 304-14, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171947

RESUMEN

The synaptic membrane-associated guanylate kinase (MAGUK) scaffolding protein family is thought to play key roles in synapse assembly and synaptic plasticity. Evidence supporting these roles in vivo is scarce, as a consequence of gene redundancy in mammals. The genome of Drosophila contains only one MAGUK gene, discs large (dlg), from which two major proteins originate: DLGA [PSD95 (postsynaptic density 95)-like] and DLGS97 [SAP97 (synapse-associated protein)-like]. These differ only by the inclusion in DLGS97 of an L27 domain, important for the formation of supramolecular assemblies. Known dlg mutations affect both forms and are lethal at larval stages attributable to tumoral overgrowth of epithelia. We generated independent null mutations for each, dlgA and dlgS97. These allowed unveiling of a shift in expression during the development of the nervous system: predominant expression of DLGA in the embryo, balanced expression of both during larval stages, and almost exclusive DLGS97 expression in the adult brain. Loss of embryonic DLGS97 does not alter the development of the nervous system. At larval stages, DLGA and DLGS97 fulfill both unique and partially redundant functions in the neuromuscular junction. Contrary to dlg and dlgA mutants, dlgS97 mutants are viable to adulthood, but they exhibit marked alterations in complex behaviors such as phototaxis, circadian activity, and courtship, whereas simpler behaviors like locomotion and odor and light perception are spared. We propose that the increased repertoire of associations of a synaptic scaffold protein given by an additional domain of protein-protein interaction underlies its ability to integrate molecular networks required for complex functions in adult synapses.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Unión Neuromuscular/fisiología , Isoformas de Proteínas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Ritmo Circadiano/fisiología , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales de la Membrana/fisiología , Microscopía Electrónica de Transmisión/métodos , Actividad Motora , Mutación/fisiología , Unión Neuromuscular/ultraestructura , Isoformas de Proteínas/genética , Conducta Sexual Animal/fisiología , Proteínas Supresoras de Tumor/genética
16.
Trends Neurosci ; 30(6): 268-75, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17467065

RESUMEN

Synaptic development, function and plasticity are highly regulated processes requiring a precise coordination of pre- and postsynaptic events. Recent studies have begun to highlight Wingless-Int (Wnt) signaling as a key player in synapse differentiation and function. Emerging roles of Wnts include the differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, modulation of synaptic efficacy and regulation of gene expression. These processes are driven by a variety of Wnt transduction pathways. Combined with a myriad of Wnts and Frizzled receptor family members, these pathways highlight the versatility of Wnt signaling and the potential for combinatorial use of these pathways in different aspects of synapse development and function. The identification of neurons secreting Wnt and those containing molecular components downstream of Frizzled receptors indicates that Wnts can function both as anterograde and retrograde signals. These studies open new avenues for understanding how embryonic morphogens are utilized during the development and function of synaptic networks.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Proteínas Wnt/fisiología , Animales , Secuencia de Bases , Receptores Frizzled/fisiología , Humanos , Datos de Secuencia Molecular , Sistema Nervioso/crecimiento & desarrollo , Homología de Secuencia de Ácido Nucleico
17.
Neuron ; 42(4): 567-80, 2004 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15157419

RESUMEN

The Baz/Par-3-Par-6-aPKC complex is an evolutionarily conserved cassette critical for the development of polarity in epithelial cells, neuroblasts, and oocytes. aPKC is also implicated in long-term synaptic plasticity in mammals and the persistence of memory in flies, suggesting a synaptic function for this cassette. Here we show that at Drosophila glutamatergic synapses, aPKC controls the formation and structure of synapses by regulating microtubule (MT) dynamics. At the presynapse, aPKC regulates the stability of MTs by promoting the association of the MAP1Brelated protein Futsch to MTs. At the postsynapse, aPKC regulates the synaptic cytoskeleton by controlling the extent of Actin-rich and MT-rich areas. In addition, we show that Baz and Par-6 are also expressed at synapses and that their synaptic localization depends on aPKC activity. Our findings establish a novel role for this complex during synapse development and provide a cellular context for understanding the role of aPKC in synaptic plasticity and memory.


Asunto(s)
Diferenciación Celular/genética , Drosophila melanogaster/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular , Microtúbulos/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Terminales Presinápticos/metabolismo , Proteína Quinasa C/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácido Glutámico/metabolismo , Memoria/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Factores de Crecimiento Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Plasticidad Neuronal/genética , Terminales Presinápticos/ultraestructura , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas , Proteínas/metabolismo , Transmisión Sináptica/genética
18.
J Neurosci ; 27(5): 1033-44, 2007 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-17267557

RESUMEN

Targeted membrane addition is a hallmark of many cellular functions. In the nervous system, modification of synaptic membrane size has a major impact on synaptic function. However, because of the complex shape of neurons and the need to target membrane addition to very small and polarized synaptic compartments, this process is poorly understood. Here, we show that Gtaxin (GTX), a Drosophila t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor), is required for expansion of postsynaptic membranes during new synapse formation. Mutations in gtx lead to drastic reductions in postsynaptic membrane surface, whereas gtx upregulation results in the formation of complex membrane structures at ectopic sites. Postsynaptic GTX activity depends on its direct interaction with Discs-Large (DLG), a multidomain scaffolding protein of the PSD-95 (postsynaptic density protein-95) family with key roles in cell polarity and formation of cellular junctions as well as synaptic protein anchoring and trafficking. We show that DLG selectively determines the postsynaptic distribution of GTX to type I, but not to type II or type III boutons on the same cell, thereby defining sites of membrane addition to this unique set of glutamatergic synapses. We provide a mechanistic explanation for selective targeted membrane expansion at specific synaptic junctions.


Asunto(s)
Proteínas de Drosophila/fisiología , Terminales Presinápticos/metabolismo , Proteínas SNARE/metabolismo , Membranas Sinápticas/fisiología , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Resistencia a Medicamentos , Datos de Secuencia Molecular , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Proteínas SNARE/genética , Proteínas SNARE/fisiología , Membranas Sinápticas/ultraestructura , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
19.
Curr Biol ; 12(7): 531-9, 2002 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11937021

RESUMEN

BACKGROUND: Membrane-associated guanylate kinases (MAGUKs), such as Discs-Large (DLG), play critical roles in synapse maturation by regulating the assembly of synaptic multiprotein complexes. Previous studies have revealed a genetic interaction between DLG and another PDZ scaffolding protein, SCRIBBLE (SCRIB), during the establishment of cell polarity in developing epithelia. A possible interaction between DLG and SCRIB at synaptic junctions has not yet been addressed. Likewise, the biochemical nature of this interaction remains elusive, raising questions regarding the mechanisms by which the actions of both proteins are coordinated. RESULTS: Here we report the isolation of a new DLG-interacting protein, GUK-holder, that interacts with the GUK domain of DLG and which is dynamically expressed during synaptic bouton budding. We also show that at Drosophila synapses DLG colocalizes with SCRIB and that this colocalization is likely to be mediated by direct interactions between GUKH and the PDZ2 domain of SCRIB. We show that DLG, GUKH, and SCRIB form a tripartite complex at synapses, in which DLG and GUKH are required for the proper synaptic localization of SCRIB. CONCLUSIONS: Our results provide a mechanism by which developmentally important PDZ-mediated complexes are associated at the synapse.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/metabolismo , Proteínas de la Membrana/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Sinapsis/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Drosophila melanogaster , Guanilato-Quinasas , Proteínas de Insectos/genética , Proteínas de la Membrana/genética , Nucleósido-Fosfato Quinasa/genética , Proteínas Supresoras de Tumor/genética
20.
Neuron ; 93(6): 1245-1247, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28334601

RESUMEN

In this issue of Neuron, Newman et al. (2017) image calcium events at single synapses of unanesthetized Drosophila larvae. Synaptic plasticity and homeostatic regulation of synapses is established to be input specific. Furthermore, plasticity forms involve selective recruitment of previously active or silent synapses.


Asunto(s)
Plasticidad Neuronal , Sinapsis , Animales , Drosophila , Homeostasis , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA