Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Invest ; 90(2): 584-95, 1992 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-1644925

RESUMEN

Genotyping for 10 mutations in the CYP21 gene was performed in 88 families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Southern blot analysis was used to detect CYP21 deletions or large gene conversions, and allele-specific hybridizations were performed with DNA amplified by the polymerase chain reaction to detect smaller mutations. Mutations were detected on 95% of chromosomes examined. The most common mutations were an A----G change in the second intron affecting pre-mRNA splicing (26%), large deletions (21%), Ile-172----Asn (16%), and Val-281----Leu (11%). Patients were classified into three mutation groups based on degree of predicted enzymatic compromise. Mutation groups were correlated with clinical diagnosis and specific measures of in vivo 21-hydroxylase activity, such as 17-hydroxyprogesterone, aldosterone, and sodium balance. Mutation group A (no enzymatic activity) consisted principally of salt-wasting (severely affected) patients, group B (2% activity) of simple virilizing patients, and group C (10-20% activity) of nonclassic (mildly affected) patients, but each group contained patients with phenotypes either more or less severe than predicted. These data suggest that most but not all of the phenotypic variability in 21-hydroxylase deficiency results from allelic variation in CYP21. Accurate prenatal diagnosis should be possible in most cases using the described strategy.


Asunto(s)
Hiperplasia Suprarrenal Congénita/genética , Alelos , Secuencia de Bases , Deleción Cromosómica , Frecuencia de los Genes , Humanos , Datos de Secuencia Molecular , Mutación , Oligodesoxirribonucleótidos/química , Sondas de Oligonucleótidos , Linaje , Fenotipo , Esteroide 21-Hidroxilasa/genética
2.
J Steroid Biochem Mol Biol ; 41(3-8): 445-51, 1992 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1562517

RESUMEN

The most common enzymatic defect of steroid synthesis is adrenal steroid 21-hydroxylase deficiency. Inhibited formation of cortisol causes increased pituitary release of ACTH, driving the adrenal cortex to overproduce androgens, whose synthesis does not involve the 21-hydroxylase enzyme. This hormonal setting is established in the embryonic period and affects development of genetic females, misdirecting differentiation of the external genitalia toward male type. At birth, the genitalia are visibly ambiguous (enlarged clitoris, fused labia) or in some cases even male in appearance (phallus with urethral opening, rugated scrotal sac), leading to wrong sex assignment. Adrenal steroid 21-hydroxylase deficiency is the most common basis of female pseudohermaphroditism. These females, however, have normal fertility and potential for gestation (gonads are functional and the internal duct-derived structures are well-formed), thus the sex of rearing should always be female. Management is by life-long hormonal (glucocorticoid) replacement, with surgical correction of the genital ambiguity. Prenatal diagnosis of 21-hydroxylase deficiency, first possible by steroid assay of the amniotic fluid, has utilized HLA typing for identification of loci (antigens B and DR) in close linkage with the 21-hydroxylase gene, and now increasingly relies on DNA analysis for linked HLA or C4 genes or for mutant 21-hydroxylase alleles directly by molecular genetic techniques. The most recent clinical advance is a program of combined prenatal diagnosis with karyotyping and suppression of fetal androgen production in genetic females by steroid administration to the mother. This is the first instance of an inborn metabolic error to be prenatally treated. A series of 85 managed pregnancies is reported on, including accuracy of diagnosis, response of the mother to steroid treatment, and outcome for treated and untreated male and female fetuses (of 77 born by 6/91). Prenatal diagnosis by current techniques is accurate. Normal growth and development patterns postnatally suggest that dexamethasone treatment is safe.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/tratamiento farmacológico , Dexametasona/uso terapéutico , Diagnóstico Prenatal , Hiperplasia Suprarrenal Congénita/embriología , Amniocentesis , Femenino , Edad Gestacional , Antígenos HLA/análisis , Humanos , Recién Nacido , Embarazo , Factores de Riesgo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA