RESUMEN
Embryonic stem (ES) cells have been available from inbred mice since 1981 but have not been validated for other rodents. Failure to establish ES cells from a range of mammals challenges the identity of cultivated stem cells and our understanding of the pluripotent state. Here we investigated derivation of ES cells from the rat. We applied molecularly defined conditions designed to shield the ground state of authentic pluripotency from inductive differentiation stimuli. Undifferentiated cell lines developed that exhibited diagnostic features of ES cells including colonization of multiple tissues in viable chimeras. Definitive ES cell status was established by transmission of the cell line genome to offspring. Derivation of germline-competent ES cells from the rat paves the way to targeted genetic manipulation in this valuable biomedical model species. Rat ES cells will also provide a refined test-bed for functional evaluation of pluripotent stem cell-derived tissue repair and regeneration.
Asunto(s)
Masa Celular Interna del Blastocisto/citología , Células Madre Embrionarias/citología , Animales , Técnicas de Cultivo de Célula , Línea Celular , Quimera , Femenino , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Masculino , Ratones , Ratones SCID , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Ratas , Ratas Endogámicas F344 , Ratas EndogámicasRESUMEN
Stabilization of ß-catenin, through inhibition of glycogen synthase kinase 3 (GSK3) activity, in conjunction with inhibition of mitogen-activated protein kinase kinase 1/2 (MEK) promotes self-renewal of naïve-type mouse embryonic stem cells (ESC). In developmentally more advanced, primed-type, epiblast stem cells, however, ß-catenin activity induces differentiation. We investigated the response of rat ESCs to ß-catenin signaling and found that when maintained on feeder-support cells in the presence of a MEK inhibitor alone (1i culture), the derivation efficiency, growth, karyotypic stability, transcriptional profile, and differentiation potential of rat ESC cultures was similar to that of cell lines established using both MEK and GSK3 inhibitors (2i culture). Equivalent mouse ESCs, by comparison, differentiated in identical 1i conditions, consistent with insufficient ß-catenin activity. This interspecies difference in reliance on GSK3 inhibition corresponded with higher overall levels of ß-catenin activity in rat ESCs. Indeed, rat ESCs displayed widespread expression of the mesendoderm-associated ß-catenin targets, Brachyury and Cdx2 in 2i medium, and overt differentiation upon further increases in ß-catenin activity. In contrast, mouse ESCs were resistant to differentiation at similarly elevated doses of GSK3 inhibitor. Interestingly, without feeder support, moderate levels of GSK3 inhibition were necessary to support effective growth of rat ESC, confirming the conserved role for ß-catenin in ESC self-renewal. This work identifies ß-catenin signaling as a molecular rheostat in rat ESC, regulating self-renewal in a dose-dependent manner, and highlights the potential importance of controlling flux in this signaling pathway to achieve effective stabilization of naïve pluripotency.
Asunto(s)
Células Madre Embrionarias/fisiología , beta Catenina/metabolismo , Animales , Benzamidas/farmacología , Factor de Transcripción CDX2 , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo , Difenilamina/análogos & derivados , Difenilamina/farmacología , Proteínas Fetales/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Homeodominio/metabolismo , Laminina/metabolismo , Ratones , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Vía de Señalización WntRESUMEN
Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour.
Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Síndrome de Lesch-Nyhan/metabolismo , Animales , Humanos , Hipoxantina Fosforribosiltransferasa/deficiencia , Hipoxantina Fosforribosiltransferasa/genética , Síndrome de Lesch-Nyhan/genética , Masculino , Metabolómica/métodos , Ratones Noqueados , Mutación , Nucleótidos de Purina/metabolismo , Ratas Transgénicas , Roedores , Espectrometría de Masas en TándemRESUMEN
In this article, we respond to public concern expressed about the welfare of genetically modified (GM) nonhuman animals. As a contribution to the debate on this subject, we attempt in this article to determine in what situations the practice of genetic modification in rodents may generate significant welfare problems. After a brief discussion of the principles of animal welfare, we focus on the problem of animal suffering and review some types of gene modifications likely to cause predictable welfare problems. In this article, we also consider suffering that may be involved in the process of generating GM animals. Finally, we discuss the role of GM animals in attempts to reduce, replace, and refine the use of animals in research.
Asunto(s)
Bienestar del Animal , Animales Modificados Genéticamente , Animales de Laboratorio , AnimalesRESUMEN
The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat.
Asunto(s)
Células Madre Embrionarias/citología , Marcación de Gen/métodos , Técnicas Genéticas , Recombinación Genética , Animales , Animales Modificados Genéticamente , Blastocisto/citología , Células Cultivadas , Hipoxantina Fosforribosiltransferasa/genética , Masculino , Modelos Genéticos , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Especificidad de la EspecieRESUMEN
Embryonic stem (ES) cells are permanent pluripotent stem cell lines established from pre-implantation mouse embryos. There is currently great interest in the potential therapeutic applications of analogous cells derived from human embryos. The isolation of ES cells is commonly presented as a straightforward transfer of cells in the early embryo into culture. In reality, however, continuous expansion of pluripotent cells does not occur in vivo, and in vitro is the exception rather than the norm. Both genetic and epigenetic factors influence the ability to derive ES cells. We have tracked the expression of a key marker and determinant of pluripotency, the transcription factor Oct-4, in primary cultures of mouse epiblasts and used this to assay the effect of experimental manipulations on the maintenance of a pluripotent cell compartment. We find that expression of Oct-4 is often lost prior to overt cytodifferentiation of the epiblast. The rate and extent of Oct-4 extinction varies with genetic background. We report that treatment with the MAP kinase/ERK kinase inhibitor PD98059, which suppresses activation of the mitogen-activated protein kinases Erk1 and Erk2, results in increased persistence of Oct-4-expressing cells. Oct-4 expression is also relatively sustained in cultures of diapause embryos and of isolated inner cell masses. Combination of all three conditions allowed the derivation of germline-competent ES cells from the normally refractory CBA mouse strain. These findings suggest that the genesis of an ES cell is a relatively complex process requiring epigenetic modulation of key gene expression over a brief time-window. Procedures that extend this time-window and/or directly regulate the critical genes should increase the efficiency of ES cell derivation.