Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771243

RESUMEN

Variability in brain structure is associated with the capacity for behavioral change. However, a causal link between specific brain areas and behavioral change (such as motor learning) has not been demonstrated. We hypothesized that greater gray matter volume of a primary motor cortex (M1) area active during a hand motor learning task is positively correlated with subsequent learning of the task, and that the disruption of this area blocks learning of the task. Healthy participants underwent structural MRI before learning a skilled hand motor task. Next, participants performed this learning task during fMRI to determine M1 areas functionally active during this task. This functional ROI was anatomically constrained with M1 boundaries to create a group-level "Active-M1" ROI used to measure gray matter volume in each participant. Greater gray matter volume in the left hemisphere Active-M1 ROI was related to greater motor learning in the corresponding right hand. When M1 hand area was disrupted with repetitive transcranial stimulation (rTMS), learning of the motor task was blocked, confirming its causal link to motor learning. Our combined imaging and rTMS approach revealed greater cortical volume in a task-relevant M1 area is causally related to learning of a hand motor task in healthy humans.


Asunto(s)
Sustancia Gris , Mano , Aprendizaje , Imagen por Resonancia Magnética , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen , Masculino , Femenino , Mano/fisiología , Aprendizaje/fisiología , Adulto , Adulto Joven , Sustancia Gris/fisiología , Sustancia Gris/diagnóstico por imagen , Destreza Motora/fisiología , Mapeo Encefálico , Lateralidad Funcional/fisiología
2.
Ann Neurol ; 93(2): 336-347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36097798

RESUMEN

OBJECTIVE: Stroke is a leading cause of human death and disability. Effective early treatments with reasonable therapeutic windows remain critically important to improve the outcomes of stroke. Transcranial magnetic stimulation (TMS) is an established noninvasive technique that has been applied clinically and in animal research for multiple brain disorders, but few studies have examined acute neuroprotection against ischemic stroke. The present investigation tested the novel approach of low-frequency repetitive TMS (rTMS) as an acute treatment after ischemic stroke. METHODS: Adult male rats received focal ischemic surgery through occlusion of the right middle cerebral artery for 60 minutes. The rats received either rTMS or sham treatment with 1.5-, 3-, 4-, or 7-hour delay after the onset of stroke. Low-frequency and low-intensity rTMS was applied to the rat brain for two 30-minute episodes separated by a 1-hour interval. RESULTS: Three days after stroke, compared to stroke controls, rats receiving rTMS treatment with a 1.5-hour delay showed a 35% reduction of infarct volume. Protective effects were also seen with 3- or 4-hour-delayed treatments by rTMS, shown as reduced infarct volume and cell death. rTMS treatment upregulated the antiapoptotic factor Bcl-2 and downregulated the proapoptotic caspase-3 cleavage, expressions of Bax and matrix metallopeptidase-9. In sensorimotor functional assessments 3 to 21 days after stroke, rats receiving rTMS treatment with a 1.5- or 3-hour delay showed significantly better performance compared to stroke controls. INTERPRETATION: These results support the inference that low-frequency rTMS may be feasible as a neuroprotective acute treatment after ischemic stroke. ANN NEUROL 2023;93:336-347.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Adulto , Ratas , Masculino , Animales , Estimulación Magnética Transcraneal/métodos , Accidente Cerebrovascular Isquémico/terapia , Isquemia Encefálica/terapia , Neuroprotección , Accidente Cerebrovascular/terapia , Resultado del Tratamiento , Infarto
3.
Hum Brain Mapp ; 43(1): 129-148, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32310331

RESUMEN

The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Accidente Cerebrovascular , Humanos , Estudios Multicéntricos como Asunto , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular
4.
J Neurophysiol ; 124(3): 728-739, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32727264

RESUMEN

In functional magnetic resonance imaging (fMRI) studies, performance of unilateral hand movements is associated with primary motor cortex activity ipsilateral to the moving hand (M1ipsi), in addition to contralateral activity (M1contra). The magnitude of M1ipsi activity increases with the demand on precision of the task. However, it is unclear how demand-dependent increases in M1ipsi recruitment relate to the control of hand movements. To address this question, we used fMRI to measure blood oxygenation level-dependent (BOLD) activity during performance of a task that varied in demand on precision. Participants (n = 23) manipulated an MRI-compatible joystick with their right or left hand to move a cursor into targets of different sizes (small, medium, large, extra large). Performance accuracy, movement time, and number of velocity peaks scaled with target size, whereas reaction time, maximum velocity, and initial direction error did not. In the univariate analysis, BOLD activation in M1contra and M1ipsi was higher for movements to smaller targets. Representational similarity analysis, corrected for mean activity differences, revealed multivoxel BOLD activity patterns during movements to small targets were most similar to those for medium targets and least similar to those for extra-large targets. Only models that varied with demand (target size, performance accuracy, and number of velocity peaks) correlated with the BOLD dissimilarity patterns, though differently for right and left hands. Across individuals, M1contra and M1ipsi similarity patterns correlated with each other. Together, these results suggest that increasing demand on precision in a unimanual motor task increases M1 activity and modulates M1 activity patterns.NEW & NOTEWORTHY Contralateral primary motor cortex (M1) predominantly controls unilateral hand movements, but the role of ipsilateral M1 is unclear. We used functional magnetic resonance imaging (fMRI) to investigate how M1 activity is modulated by unimanual movements at different levels of demand on precision. Our results show that task characteristics related to demand on precision influence bilateral M1 activity, suggesting that in addition to contralateral M1, ipsilateral M1 plays a key role in controlling hand movements to meet performance precision requirements.


Asunto(s)
Mapeo Encefálico , Lateralidad Funcional/fisiología , Mano/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen
5.
J Neurosci ; 35(24): 9163-72, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26085638

RESUMEN

The neural systems controlling head movements are not well delineated in humans. It is not clear whether the ipsilateral or contralateral primary motor cortex is involved in turning the head right or left. Furthermore, the exact location of the neck motor area in the somatotopic organization of the motor homunculus is still debated and evidence for contributions from other brain regions in humans is scarce. Because currently available neuroimaging methods are not generally suitable for mapping brain activation patterns during head movements, we conducted fMRI scans during isometric tasks of the head. During isometric tasks, muscle contractions occur without an actual movement and they have been used to delineate patterns of brain activity related to movements of other body parts such as the hands. Healthy individuals were scanned during isometric head rotation or wrist extension. Isometric wrist extension was examined as a positive control and to establish the relative locations of head and hand regions in the motor cortex. Electromyographic recordings of neck and hand muscles during scanning ensured compliance with the tasks. Increased brain activity during isometric head rotation was observed bilaterally in the precentral gyrus, both medial and lateral to the hand area, as well the supplementary motor area, insula, putamen, and cerebellum. These findings clarify the location of the neck region in the motor homunculus and help to reconcile some of the conflicting results obtained in earlier studies.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Movimientos de la Cabeza/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Electromiografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Proyectos Piloto
6.
J Neurophysiol ; 115(6): 2803-13, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26961108

RESUMEN

The role of primary motor cortex (M1) in the control of hand movements is still unclear. Functional magnetic resonance imaging (fMRI) studies of unimanual performance reported a relationship between level of precision of a motor task and additional ipsilateral M1 (iM1) activation. In the present study, we determined whether the demand on accuracy of a movement influences the magnitude of the inhibitory effect between primary motor cortices (IHI). We used transcranial magnetic stimulation (TMS) to measure active IHI (aIHI) of the iM1 on the contralateral M1 (cM1) in the premovement period of a left-hand motor task. Ten healthy participants manipulated a joystick to point to targets of two different sizes. For aIHI, the conditioning stimulus (CS) was applied to iM1, and the test stimulus (TS) to cM1, with an interstimulus interval of 10 ms. The amount of the inhibitory effect of the CS on the motor-evoked potential (MEP) of the subsequent TS was expressed as percentage of the mean MEP amplitude evoked by the single TS. Across different time points of aIHI measurements in the premovement period, there was a significant effect for target size on aIHI. Preparing to point to small targets was associated with weaker aIHI compared with pointing to large targets. The present findings suggest that, during the premovement period, aIHI from iM1 on cM1 is modulated by the demand on accuracy of the motor task. This is consistent with task fMRI findings showing bilateral M1 activation during high-precision movements but only unilateral M1 activity during low-precision movements.


Asunto(s)
Lateralidad Funcional/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Inhibición Neural/fisiología , Anciano , Electromiografía , Potenciales Evocados Motores/fisiología , Femenino , Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Músculo Esquelético/fisiología , Pruebas Neuropsicológicas , Tiempo de Reacción , Estimulación Magnética Transcraneal
7.
Exp Brain Res ; 233(3): 871-84, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25511164

RESUMEN

The intact neuromotor system prepares for object grasp by first opening the hand to an aperture that is scaled according to object size and then closing the hand around the object. After cervical spinal cord injury (SCI), hand function is significantly impaired, but the degree to which object-specific hand aperture scaling is affected remains unknown. Here, we hypothesized that persons with incomplete cervical SCI have a reduced maximum hand opening capacity but exhibit novel neuromuscular coordination strategies that permit object-specific hand aperture scaling during reaching. To test this hypothesis, we measured hand kinematics and surface electromyography from seven muscles of the hand and wrist during attempts at maximum hand opening as well as reaching for four balls of different diameters. Our results showed that persons with SCI exhibited significantly reduced maximum hand aperture compared to able-bodied (AB) controls. However, persons with SCI preserved the ability to scale peak hand aperture with ball size during reaching. Persons with SCI also used distinct muscle coordination patterns that included increased co-activity of flexors and extensors at the wrist and hand compared to AB controls. These results suggest that motor planning for aperture modulation is preserved even though execution is limited by constraints on hand opening capacity and altered muscle co-activity. Thus, persons with incomplete cervical SCI may benefit from rehabilitation aimed at increasing hand opening capacity and reducing flexor-extensor co-activity at the wrist and hand.


Asunto(s)
Médula Cervical/lesiones , Fuerza de la Mano/fisiología , Mano/fisiología , Desempeño Psicomotor/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Adulto , Fenómenos Biomecánicos/fisiología , Médula Cervical/fisiopatología , Electromiografía , Femenino , Humanos , Masculino , Movimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto Joven
8.
J Neurophysiol ; 112(4): 999-1009, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24848477

RESUMEN

The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision.


Asunto(s)
Corteza Motora/fisiología , Destreza Motora , Anciano , Femenino , Lateralidad Funcional , Mano/inervación , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Corteza Somatosensorial/fisiología
9.
Neurology ; 102(10): e209387, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38701386

RESUMEN

BACKGROUND AND OBJECTIVES: Motor outcomes after stroke relate to corticospinal tract (CST) damage. The brain leverages surviving neural pathways to compensate for CST damage and mediate motor recovery. Thus, concurrent age-related damage from white matter hyperintensities (WMHs) might affect neurologic capacity for recovery after CST injury. The role of WMHs in post-stroke motor outcomes is unclear. In this study, we evaluated whether WMHs modulate the relationship between CST damage and post-stroke motor outcomes. METHODS: We used data from the multisite ENIGMA Stroke Recovery Working Group with T1 and T2/fluid-attenuated inversion recovery imaging. CST damage was indexed with weighted CST lesion load (CST-LL). WMH volumes were extracted with Freesurfer's SAMSEG. Mixed-effects beta-regression models were fit to test the impact of CST-LL, WMH volume, and their interaction on motor impairment, controlling for age, days after stroke, and stroke volume. RESULTS: A total of 223 individuals were included. WMH volume related to motor impairment above and beyond CST-LL (ß = 0.178, 95% CI 0.025-0.331, p = 0.022). Relationships varied by WMH severity (mild vs moderate-severe). In individuals with mild WMHs, motor impairment related to CST-LL (ß = 0.888, 95% CI 0.604-1.172, p < 0.001) with a CST-LL × WMH interaction (ß = -0.211, 95% CI -0.340 to -0.026, p = 0.026). In individuals with moderate-severe WMHs, motor impairment related to WMH volume (ß = 0.299, 95% CI 0.008-0.590, p = 0.044), but did not significantly relate to CST-LL or a CST-LL × WMH interaction. DISCUSSION: WMHs relate to motor outcomes after stroke and modify relationships between motor impairment and CST damage. WMH-related damage may be under-recognized in stroke research as a factor contributing to variability in motor outcomes. Our findings emphasize the importance of brain structural reserve in motor outcomes after brain injury.


Asunto(s)
Tractos Piramidales , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Masculino , Femenino , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Persona de Mediana Edad , Imagen por Resonancia Magnética , Recuperación de la Función/fisiología , Anciano de 80 o más Años
10.
Int J Stroke ; 19(2): 145-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37824726

RESUMEN

BACKGROUND AND AIMS: The purpose of this Third Stroke Recovery and Rehabilitation Roundtable (SRRR3) was to develop consensus recommendations to address outstanding barriers for the translation of preclinical and clinical research using the non-invasive brain stimulation (NIBS) techniques Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) and provide a roadmap for the integration of these techniques into clinical practice. METHODS: International NIBS and stroke recovery experts (N = 18) contributed to the consensus process. Using a nominal group technique, recommendations were reached via a five-stage process, involving a thematic survey, two priority ranking surveys, a literature review and an in-person meeting. RESULTS AND CONCLUSIONS: Results of our consensus process yielded five key evidence-based and feasibility barriers for the translation of preclinical and clinical NIBS research, which were formulated into five core consensus recommendations. Recommendations highlight an urgent need for (1) increased understanding of NIBS mechanisms, (2) improved methodological rigor in both preclinical and clinical NIBS studies, (3) standardization of outcome measures, (4) increased clinical relevance in preclinical animal models, and (5) greater optimization and individualization of NIBS protocols. To facilitate the implementation of these recommendations, the expert panel developed a new SRRR3 Unified NIBS Research Checklist. These recommendations represent a translational pathway for the use of NIBS in stroke rehabilitation research and practice.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Humanos , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Consenso , Estimulación Magnética Transcraneal/métodos , Fenómenos Magnéticos
11.
Neurorehabil Neural Repair ; 38(1): 19-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37837350

RESUMEN

BACKGROUND AND AIMS: The purpose of this Third Stroke Recovery and Rehabilitation Roundtable (SRRR3) was to develop consensus recommendations to address outstanding barriers for the translation of preclinical and clinical research using the non-invasive brain stimulation (NIBS) techniques Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) and provide a roadmap for the integration of these techniques into clinical practice. METHODS: International NIBS and stroke recovery experts (N = 18) contributed to the consensus process. Using a nominal group technique, recommendations were reached via a five-stage process, involving a thematic survey, two priority ranking surveys, a literature review and an in-person meeting. RESULTS AND CONCLUSIONS: Results of our consensus process yielded five key evidence-based and feasibility barriers for the translation of preclinical and clinical NIBS research, which were formulated into five core consensus recommendations. Recommendations highlight an urgent need for (1) increased understanding of NIBS mechanisms, (2) improved methodological rigor in both preclinical and clinical NIBS studies, (3) standardization of outcome measures, (4) increased clinical relevance in preclinical animal models, and (5) greater optimization and individualization of NIBS protocols. To facilitate the implementation of these recommendations, the expert panel developed a new SRRR3 Unified NIBS Research Checklist. These recommendations represent a translational pathway for the use of NIBS in stroke rehabilitation research and practice.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Consenso , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Fenómenos Magnéticos
12.
Neurorehabil Neural Repair ; 37(2-3): 119-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36786394

RESUMEN

BACKGROUND: After stroke, increases in contralesional primary motor cortex (M1CL) activity and excitability have been reported. In pre-clinical studies, M1CL reorganization is related to the extent of ipsilesional M1 (M1IL) injury, but this has yet to be tested clinically. OBJECTIVES: We tested the hypothesis that the extent of damage to the ipsilesional M1 and/or its corticospinal tract (CST) determines the magnitude of M1CL reorganization and its relationship to affected hand function in humans recovering from stroke. METHODS: Thirty-five participants with a single subacute ischemic stroke affecting M1 or CST and hand paresis underwent MRI scans of the brain to measure lesion volume and CST lesion load. Transcranial magnetic stimulation (TMS) of M1IL was used to determine the presence of an electromyographic response (motor evoked potential (MEP+ and MEP-)). M1CL reorganization was determined by TMS applied to M1CL at increasing intensities. Hand function was quantified with the Jebsen Taylor Hand Function Test. RESULTS: The extent of M1CL reorganization was related to greater lesion volume in the MEP- group, but not in the MEP+ group. Greater M1CL reorganization was associated with more impaired hand function in MEP- but not MEP+ participants. Absence of an MEP (MEP-), larger lesion volumes and higher lesion loads in CST, particularly in CST fibers originating in M1 were associated with greater impairment of hand function. CONCLUSIONS: In the subacute post-stroke period, stroke volume and M1IL output determine the extent of M1CL reorganization and its relationship to affected hand function, consistent with pre-clinical evidence.ClinicalTrials.gov Identifier: NCT02544503.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Humanos , Volumen Sistólico , Encéfalo , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología
13.
medRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961329

RESUMEN

Motor outcomes after stroke relate to corticospinal tract (CST) damage. Concurrent damage from white matter hyperintensities (WMHs) might impact neurological capacity for recovery after CST injury. Here, we evaluated if WMHs modulate the relationship between CST damage and post-stroke motor impairment outcome. We included 223 individuals from the ENIGMA Stroke Recovery Working Group. CST damage was indexed with weighted CST lesion load (CST-LL). Mixed effects beta-regression models were fit to test the impact of CST-LL, WMH volume, and their interaction on motor impairment. WMH volume related to motor impairment above and beyond CST-LL (ß = 0.178, p = 0.022). We tested if relationships varied by WMH severity (mild vs. moderate-severe). In individuals with mild WMHs, motor impairment related to CST-LL (ß = 0.888, p < 0.001) with a CST-LL x WMH interaction (ß = -0.211, 0.026). In individuals with moderate-severe WMHs, motor impairment related to WMH volume (ß = 0.299, p = 0.044), but did not significantly relate to CST-LL or a CST-LL x WMH interaction. WMH-related damage may be under-recognised in stroke research as a factor contributing to variability in motor outcomes. Our findings emphasize the importance of brain structural reserve in motor outcomes after brain injury.

14.
Neurology ; 100(20): e2103-e2113, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37015818

RESUMEN

BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (ß = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (ß = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (ß = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004). DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets.


Asunto(s)
Accidente Cerebrovascular , Humanos , Anciano , Estudios Transversales , Accidente Cerebrovascular/complicaciones , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen
15.
Proc Natl Acad Sci U S A ; 106(7): 2395-400, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19164537

RESUMEN

Human motor development is thought to result from a complex interaction between genes and experience. The well-known somatotopic organization of the primate primary motor cortex (M1) emerges postnatally. Although adaptive changes in response to learning and use occur throughout life, somatotopy is maintained as reorganization is restricted to modifications within major body part representations. We report of a unique opportunity to evaluate the influence of experience on the genetically determined somatotopic organization of motor cortex in humans. We examined the motor "foot" representation in subjects with congenitally compromised hand function and compensatory skillful foot use. Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) of M1 revealed that the foot was represented in the classical medial foot area of M1 and was several centimetres away in nonadjacent cortex in the vicinity of the lateral "hand" area. Both areas had direct output to the spinal motor neurons innervating foot muscles and were behaviorally relevant because experimental disruption of either area by TMS altered reaction times. We demonstrate a unique, nonsomatotopically organized M1 in humans, which emerged as a function of grossly altered motor behavior from the earliest stages of development. Our results imply that during early motor development experience may play a more critical role in the shaping of genetically determined neural networks than previously assumed.


Asunto(s)
Corteza Motora/fisiología , Adulto , Mapeo Encefálico , Estudios de Casos y Controles , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Deformidades Congénitas de las Extremidades/inducido químicamente , Deformidades Congénitas de las Extremidades/patología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Corteza Motora/efectos de los fármacos , Neuronas Motoras/metabolismo , Red Nerviosa/fisiología , Talidomida/efectos adversos , Estimulación Magnética Transcraneal/métodos
16.
Front Neurol ; 13: 836716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693005

RESUMEN

Abnormal contralesional M1 activity is consistently reported in patients with compromised upper limb and hand function after stroke. The underlying mechanisms and functional implications of this activity are not clear, which hampers the development of treatment strategies targeting this brain area. The goal of the present study was to determine the extent to which contralesional M1 activity can be explained by the demand of a motor task, given recent evidence for increasing ipsilateral M1 activity with increasing demand in healthy age-matched controls. We hypothesized that higher activity in contralesional M1 is related to greater demand on precision in a hand motor task. fMRI data were collected from 19 patients with ischemic stroke affecting hand function in the subacute recovery phase and 31 healthy, right-handed, age-matched controls. The hand motor task was designed to parametrically modulate the demand on movement precision. Electromyography data confirmed strictly unilateral task performance by all participants. Patients showed significant impairment relative to controls in their ability to perform the task in the fMRI scanner. However, patients and controls responded similarly to an increase in demand for precision, with better performance for larger targets and poorer performance for smaller targets. Patients did not show evidence of elevated ipsilesional or contralesional M1 blood oxygenation level-dependent (BOLD) activation relative to healthy controls and mean BOLD activation levels were not elevated for patients with poorer performance relative to patients with better task performance. While both patients and healthy controls showed demand-dependent increases in BOLD activation in both ipsilesional/contralateral and contralesional/ipsilateral hemispheres, patients with stroke were less likely to show evidence of a linear relationship between the demand on precision and BOLD activation in contralesional M1 than healthy controls. Taken together, the findings suggest that task demand affects the BOLD response in contralesional M1 in patients with stroke, though perhaps less strongly than in healthy controls. This has implications for the interpretation of reported abnormal bilateral M1 activation in patients with stroke because in addition to contralesional M1 reorganization processes it could be partially related to a response to the relatively higher demand of a motor task when completed by patients rather than by healthy controls.

17.
J Am Heart Assoc ; 11(10): e025109, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35574963

RESUMEN

Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ß=0.16) but not contralesional (P=0.96; ß=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ß=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ß=-0.26) and contralesional (P=0.006; ß=-0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ß=-0.21) and extent of sensorimotor damage (P=0.003; ß=-0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estudios Transversales , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Masculino , Calidad de Vida , Recuperación de la Función , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior
18.
Sci Data ; 9(1): 320, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710678

RESUMEN

Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología
19.
J Neurophysiol ; 106(4): 1614-21, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21734109

RESUMEN

The role of primary motor cortex (M1) in the control of voluntary movements is still unclear. In brain functional imaging studies of unilateral hand performance, bilateral M1 activation is inconsistently observed, and disruptions of M1 using repetitive transcranial magnetic stimulation (rTMS) lead to variable results in the hand motor performance. As the motor tasks differed qualitatively in these studies, it is conceivable that M1 contribution differs depending on the level of skillfulness. The objective of the present study was to determine whether M1 contribution to hand motor performance differed depending on the level of precision of the motor task. Here, we used low-frequency rTMS of left M1 to determine its effect on the performance of a pointing task that allows the parametric increase of the level of precision and thereby increase the level of required precision quantitatively. We found that low-frequency rTMS improved performance in both hands for the task with the highest demand on precision, whereas performance remained unchanged for the tasks with lower demands. These results suggest that the functional relevance of M1 activity for motor performance changes as a function of motor demand. The bilateral effect of rTMS to left M1 would also support the notion of M1 functions at a higher level in motor control by integrating afferent input from nonprimary motor areas.


Asunto(s)
Corteza Motora/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Estimulación Magnética Transcraneal , Adulto , Vías Aferentes/fisiología , Anciano , Mapeo Encefálico , Potenciales Evocados Motores , Femenino , Lateralidad Funcional/fisiología , Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tiempo de Reacción/fisiología , Método Simple Ciego
20.
Brain Commun ; 3(4): fcab254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805997

RESUMEN

Up to two-thirds of stroke survivors experience persistent sensorimotor impairments. Recovery relies on the integrity of spared brain areas to compensate for damaged tissue. Deep grey matter structures play a critical role in the control and regulation of sensorimotor circuits. The goal of this work is to identify associations between volumes of spared subcortical nuclei and sensorimotor behaviour at different timepoints after stroke. We pooled high-resolution T1-weighted MRI brain scans and behavioural data in 828 individuals with unilateral stroke from 28 cohorts worldwide. Cross-sectional analyses using linear mixed-effects models related post-stroke sensorimotor behaviour to non-lesioned subcortical volumes (Bonferroni-corrected, P < 0.004). We tested subacute (≤90 days) and chronic (≥180 days) stroke subgroups separately, with exploratory analyses in early stroke (≤21 days) and across all time. Sub-analyses in chronic stroke were also performed based on class of sensorimotor deficits (impairment, activity limitations) and side of lesioned hemisphere. Worse sensorimotor behaviour was associated with a smaller ipsilesional thalamic volume in both early (n = 179; d = 0.68) and subacute (n = 274, d = 0.46) stroke. In chronic stroke (n = 404), worse sensorimotor behaviour was associated with smaller ipsilesional putamen (d = 0.52) and nucleus accumbens (d = 0.39) volumes, and a larger ipsilesional lateral ventricle (d = -0.42). Worse chronic sensorimotor impairment specifically (measured by the Fugl-Meyer Assessment; n = 256) was associated with smaller ipsilesional putamen (d = 0.72) and larger lateral ventricle (d = -0.41) volumes, while several measures of activity limitations (n = 116) showed no significant relationships. In the full cohort across all time (n = 828), sensorimotor behaviour was associated with the volumes of the ipsilesional nucleus accumbens (d = 0.23), putamen (d = 0.33), thalamus (d = 0.33) and lateral ventricle (d = -0.23). We demonstrate significant relationships between post-stroke sensorimotor behaviour and reduced volumes of deep grey matter structures that were spared by stroke, which differ by time and class of sensorimotor measure. These findings provide additional insight into how different cortico-thalamo-striatal circuits support post-stroke sensorimotor outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA