Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 32(10): 2231-2244, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34668519

RESUMEN

Abrupt increases of sensory input (onsets) likely reflect the occurrence of novel events or objects in the environment, potentially requiring immediate behavioral responses. Accordingly, onsets elicit a transient and widespread modulation of ongoing electrocortical activity: the Vertex Potential (VP), which is likely related to the optimisation of rapid behavioral responses. In contrast, the functional significance of the brain response elicited by abrupt decreases of sensory input (offsets) is more elusive, and a detailed comparison of onset and offset VPs is lacking. In four experiments conducted on 44 humans, we observed that onset and offset VPs share several phenomenological and functional properties: they (1) have highly similar scalp topographies across time, (2) are both largely comprised of supramodal neural activity, (3) are both highly sensitive to surprise and (4) co-occur with similar modulations of ongoing motor output. These results demonstrate that the onset and offset VPs largely reflect the activity of a common supramodal brain network, likely consequent to the activation of the extralemniscal sensory system which runs in parallel with core sensory pathways. The transient activation of this system has clear implications in optimizing the behavioral responses to surprising environmental changes.


Asunto(s)
Encéfalo , Cabeza , Encéfalo/fisiología , Electroencefalografía , Humanos
2.
Cereb Cortex ; 31(2): 949-960, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33026425

RESUMEN

Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.


Asunto(s)
Encéfalo/fisiología , Estimulación Acústica , Adulto , Anciano , Animales , Conducta/fisiología , Conducta Animal/fisiología , Electrocorticografía , Electroencefalografía , Potenciales Evocados/fisiología , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Adulto Joven
3.
J Neurophysiol ; 125(2): 509-521, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33174497

RESUMEN

Spatial EEG filters are widely used to isolate event-related potential (ERP) components. The most commonly used spatial filters (e.g., the average reference and the surface Laplacian) are "stationary." Stationary filters are conceptually simple, easy to use, and fast to compute, but all assume that the EEG signal does not change across sensors and time. Given that ERPs are intrinsically nonstationary, applying stationary filters can lead to misinterpretations of the measured neural activity. In contrast, "adaptive" spatial filters (e.g., independent component analysis, ICA; and principal component analysis, PCA) infer their weights directly from the spatial properties of the data. They are, thus, not affected by the shortcomings of stationary filters. The issue with adaptive filters is that understanding how they work and how to interpret their output require advanced statistical and physiological knowledge. Here, we describe a novel, easy-to-use, and conceptually simple adaptive filter (local spatial analysis, LSA) for highlighting local components masked by large widespread activity. This approach exploits the statistical information stored in the trial-by-trial variability of stimulus-evoked neural activity to estimate the spatial filter parameters adaptively at each time point. Using both simulated data and real ERPs elicited by stimuli of four different sensory modalities (audition, vision, touch, and pain), we show that this method outperforms widely used stationary filters and allows to identify novel ERP components masked by large widespread activity. Implementation of the LSA filter in MATLAB is freely available to download.NEW & NOTEWORTHY EEG spatial filtering is important for exploring brain function. Two classes of filters are commonly used: stationary and adaptive. Stationary filters are simple to use but wrongly assume that stimulus-evoked EEG responses (ERPs) are stationary. Adaptive filters do not make this assumption but require solid statistical and physiological knowledge. Bridging this gap, we present local spatial analysis (LSA), an adaptive, yet computationally simple, spatial filter based on linear regression that separates local and widespread brain activity (https://www.iannettilab.net/lsa.html or https://github.com/rorybufacchi/LSA-filter).


Asunto(s)
Electroencefalografía/métodos , Análisis Espacial , Potenciales Evocados , Humanos
4.
J Physiol ; 596(16): 3655-3673, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29726629

RESUMEN

KEY POINTS: Salient and sudden sensory events generate a remarkably large response in the human brain, the vertex wave (VW). The VW is coupled with a modulation of a voluntarily-applied isometric force. In the present study, we tested whether the VW is also related to executing high-precision movements. The execution of a voluntary high-precision movement remains relatively independent of the brain activity reflected by the preceding VW. The apparent relationship between the positive VW and movement onset time is explained by goal-related but stimulus-independent neural activities. These results highlight the need to consider such goal-related but stimulus-independent neural activities when attempting to relate event-related potential amplitude with perceptual and behavioural performance. ABSTRACT: Salient and fast-rising sensory events generate a large biphasic vertex wave (VW) in the human electroencephalogram (EEG). We recently reported that the VW is coupled with a modulation of concomitantly-applied isometric force. In the present study, in five experiments, we tested whether the VW is also related to high-precision visuomotor control. We obtained three results. First, the saliency-induced increase in VW amplitude was paralleled by a modulation in two of the five extracted movement parameters: a reduction in the onset time of the voluntary movement (P < 0.005) and an increase in movement accuracy (P < 0.005). Second, spontaneous trial-by-trial variability in vertex wave amplitude, for a given level of stimulus saliency, was positively correlated with movement onset time (P < 0.001 in four out of five experiments). Third, this latter trial-by-trial correlation was explained by a widespread EEG negativity independent of the occurrence of the positive VW, although overlapping in time with it. These results indicate that (i) the execution of a voluntary high-precision movement remains relatively independent of the neural processing reflected by the preceding VW, with (ii) the exception of movement onset time, for which saliency-based contextual effects are dissociated from trial-by-trial effects. These results also indicate that (iii) attentional effects can produce spurious correlations between event-related potentials (ERPs) and behavioural measures. Although sudden salient stimuli trigger characteristic EEG responses coupled with distinct reactive components within an ongoing isometric task, the results of the present study indicate that the execution of a subsequent voluntary movement appears largely protected from such saliency-based modulation, with the exception of movement onset time.


Asunto(s)
Encéfalo/fisiología , Corteza Cerebral/fisiología , Potenciales Evocados Somatosensoriales , Actividad Motora , Desempeño Psicomotor , Tiempo de Reacción , Estimulación Acústica , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
5.
J Neurophysiol ; 118(4): 1927-1930, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539400

RESUMEN

When sudden environmental stimuli signaling threat occur in the portion of space surrounding the body (defensive peripersonal space), defensive responses are enhanced. Recently Bisio et al. (Bisio A, Garbarini F, Biggio M, Fossataro C, Ruggeri P, Bove M. J Neurosci 37: 2415-2424, 2017) showed that a marker of defensive peripersonal space, the defensive hand-blink reflex, is modulated by the motion of the eliciting threatening stimulus. These results can be parsimoniously explained by the continuous monitoring of environmental threats, resulting in an expansion of defensive peripersonal space when threatening stimuli approach.


Asunto(s)
Mano , Espacio Personal , Parpadeo
6.
J Neurophysiol ; 115(1): 218-25, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26510762

RESUMEN

Potentially harmful stimuli occurring within the defensive peripersonal space (DPPS), a protective area surrounding the body, elicit stronger defensive reactions. The spatial features of the DPPS are poorly defined and limited to descriptive estimates of its extent along a single dimension. Here we postulated a family of geometric models of the DPPS, to address two important questions with respect to its spatial features: What is its fine-grained topography? How does the nervous system represent the body area to be defended? As a measure of the DPPS, we used the strength of the defensive blink reflex elicited by electrical stimulation of the hand (hand-blink reflex, HBR), which is reliably modulated by the position of the stimulated hand in egocentric coordinates. We tested the goodness of fit of the postulated models to HBR data from six experiments in which we systematically explored the HBR modulation by hand position in both head-centered and body-centered coordinates. The best-fitting model indicated that 1) the nervous system's representation of the body area defended by the HBR can be approximated by a half-ellipsoid centered on the face and 2) the DPPS extending from this area has the shape of a bubble elongated along the vertical axis. Finally, the empirical observation that the HBR is modulated by hand position in head-centered coordinates indicates that the DPPS is anchored to the face. The modeling approach described in this article can be generalized to describe the spatial modulation of any defensive response.


Asunto(s)
Modelos Neurológicos , Defensa Perceptual , Espacio Personal , Adulto , Imagen Corporal , Encéfalo/fisiología , Femenino , Mano/fisiología , Humanos , Masculino
7.
Prog Neurobiol ; 231: 102537, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832714

RESUMEN

Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.


Asunto(s)
Mano , Lóbulo Parietal , Humanos , Lóbulo Parietal/fisiología , Cognición
8.
Neurosci Lett ; 702: 11-14, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30528879

RESUMEN

Defensive motor responses elicited by sudden environmental stimuli are finely modulated by their behavioural relevance to maximise the organism's survival. One such response, the blink reflex evoked by intense electrical stimulation of the median nerve (Hand-Blink Reflex; HBR), has been extensively used to derive fine-grained maps of defensive peripersonal space. However, as other subcortical reflexes, the HBR might also be modulated by lower-level factors that do not bear direct relevance to the defensive value of blinking, thus posing methodological and interpretive problems. Here, we tested whether HBR magnitude is affected by the muscular effort present when holding the hand in certain postures. We found that HBR magnitude increases with muscular effort, an effect most likely mediated by the increased corticospinal drive. However, we found strong evidence that this effect is substantially smaller than the well-known effect of eye-hand proximity on HBR magnitude. Nonetheless, care should be taken in future experiments to avoid erroneous interpretations of the effects of muscular effort as indicators of behaviour relevance.


Asunto(s)
Parpadeo , Mano/fisiología , Nervio Mediano/fisiología , Músculo Esquelético/fisiología , Reflejo , Adulto , Estimulación Eléctrica , Femenino , Mano/inervación , Humanos , Masculino , Músculo Esquelético/inervación , Postura , Adulto Joven
9.
Sci Rep ; 9(1): 3661, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842481

RESUMEN

Subcortical reflexive motor responses are under continuous cortical control to produce the most effective behaviour. For example, the excitability of brainstem circuitry subserving the defensive hand-blink reflex (HBR), a response elicited by intense somatosensory stimuli to the wrist, depends on a number of properties of the eliciting stimulus. These include face-hand proximity, which has allowed the description of an HBR response field around the face (commonly referred to as a defensive peripersonal space, DPPS), as well as stimulus movement and probability of stimulus occurrence. However, the effect of stimulus-independent movements of objects in the environment has not been explored. Here we used virtual reality to test whether and how the HBR-derived DPPS is affected by the presence and movement of threatening objects in the environment. In two experiments conducted on 40 healthy volunteers, we observed that threatening arrows flying towards the participant result in DPPS expansion, an effect directionally-tuned towards the source of the arrows. These results indicate that the excitability of brainstem circuitry subserving the HBR is continuously adjusted, taking into account the movement of environmental objects. Such adjustments fit in a framework where the relevance of defensive actions is continually evaluated, to maximise their survival value.


Asunto(s)
Parpadeo , Tronco Encefálico/fisiología , Espacio Personal , Adulto , Estimulación Eléctrica , Femenino , Voluntarios Sanos , Humanos , Masculino , Realidad Virtual , Adulto Joven
10.
Sci Rep ; 7(1): 12487, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970521

RESUMEN

Perception of space has been guiding effective therapeutic interventions in a number of unilateral chronic pain conditions. However little is known about how trigeminal neuralgia (TN), a condition in which trigeminal stimulation triggers paroxysmal facial pain, affects defensive peripersonal space (DPPS), the portion of space surrounding the body within which defensive responses are enhanced. Given that TN is unilateral, in TN patients the DPPS of the face might not be horizontally symmetric as in pain-free individuals, but instead larger around the affected side. We tested this a priori hypothesis by measuring the proximity-dependent modulation of the hand-blink reflex. Stimuli delivered to the hand ipsilateral to TN elicited a stronger blink, particularly when it was measured from the eye ipsilateral to TN and the hand was closer to the face. Geometric modelling revealed (1) that DPPS was larger on the side of space ipsilateral to TN, and (2) this asymmetry was consequent to an increased estimated potential of sensory events to cause harm when they occur ipsilaterally to TN. These observations demonstrate that neural mechanisms underlying body protection in TN are adjusted to reduce the likelihood that external events evoke the painful paroxysm typical of this condition.


Asunto(s)
Modelos Neurológicos , Dolor/fisiopatología , Espacio Personal , Neuralgia del Trigémino/fisiopatología , Adulto , Anciano , Parpadeo/fisiología , Estimulación Eléctrica , Electromiografía , Cara , Femenino , Mano/inervación , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA