Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055214

RESUMEN

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Brain ; 147(2): 414-426, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703328

RESUMEN

Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Alelos , Proteínas Cromosómicas no Histona/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Cromatina
3.
Eur J Neurol ; 31(1): e16063, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772343

RESUMEN

BACKGROUND AND PURPOSE: Mutations in the alpha-B-crystallin (CRYAB) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB. METHODS: Whole-exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot-Marie-Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features. RESULTS: The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination. DISCUSSION: In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone-assisted autophagy.


Asunto(s)
Catarata , Enfermedad de Charcot-Marie-Tooth , Cristalinas , Humanos , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Mutación/genética , Pruebas Genéticas , Fenotipo , Cristalinas/genética , Catarata/genética , Linaje
4.
Brain ; 145(11): 3985-3998, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957489

RESUMEN

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified 10 bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in sarcoplasmic reticulum function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in sarcoplasmic reticulum Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the sarcoplasmic reticulum and/or a decrease in Ca2+ sarcoplasmic reticulum storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.


Asunto(s)
Calcio , Rabdomiólisis , Adolescente , Humanos , Rabdomiólisis/genética , Rabdomiólisis/diagnóstico , Rabdomiólisis/patología , Mialgia/genética , Retículo Sarcoplasmático/metabolismo , Pérdida de Heterocigocidad , Proteínas Serina-Treonina Quinasas , Factores de Intercambio de Guanina Nucleótido Rho/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003336

RESUMEN

A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.


Asunto(s)
Contractura , Miopatías Nemalínicas , Humanos , Preescolar , Actinas/genética , Tropomiosina/genética , Tropomiosina/química , Debilidad Muscular/genética , Debilidad Muscular/patología , Miopatías Nemalínicas/genética , Mutación , Miosinas/genética , Contractura/patología , Fenotipo , Troponina/genética , Músculo Esquelético/patología
6.
Pract Neurol ; 23(3): 239-242, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36564213

RESUMEN

Anti-HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) myopathy is an immune-mediated necrotising myopathy. Atypical presentations hinder its recognition and its prompt treatment. We present two patients with atypical clinical or pathological features. A 45-year-old woman had an asymptomatic serum creatine kinase (CK) of ~10 000 IU/L and muscle biopsy showing minimal changes. She then developed slowly progressive proximal weakness, diagnosed as limb-girdle muscular dystrophy but with negative genetics. Twelve years later, now with severe proximal weakness, her MR scan of muscle showed diffuse asymmetrical fatty degeneration, with conspicuous hyperintense STIR signal abnormalities. HMGCR antibodies were positive and she partially improved with immunosuppression. The second patient developed slowly progressive proximal limb weakness with a high serum CK (~4000 IU/L); muscle biopsy showed a lymphocyte infiltrate with angiocentric distribution suggesting vasculitis. Serum HMGCR antibodies were positive. Anti-HMGCR myopathy can present as a slowly progressive myopathy with atypical pathology. HMGCR antibody screening is indicated for people with suspected limb-girdle muscular dystrophy or atypical inflammatory muscle conditions.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Musculares , Distrofia Muscular de Cinturas , Miositis , Femenino , Humanos , Persona de Mediana Edad , Autoanticuerpos , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/patología , Miositis/diagnóstico , Miositis/tratamiento farmacológico
7.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33704825

RESUMEN

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Preescolar , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma , Adulto Joven
8.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039582

RESUMEN

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


Asunto(s)
Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Adulto , Biomarcadores , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/metabolismo , Modelos Biológicos , Linaje , Fenotipo , Secuenciación del Exoma
9.
Mol Biol Rep ; 48(3): 2093-2104, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33742325

RESUMEN

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.


Asunto(s)
Cromosomas Humanos Par 2/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Disomía Uniparental/genética , Adolescente , Secuencia de Bases , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Femenino , Fibroblastos/patología , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo , Mutación/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas , Adulto Joven
10.
Ann Neurol ; 86(2): 310-315, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31187502

RESUMEN

Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.


Asunto(s)
Variación Genética/genética , Enfermedades Mitocondriales/epidemiología , Enfermedades Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Reino Unido/epidemiología , Adulto Joven
11.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31673819

RESUMEN

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Asunto(s)
Mutación , Piruvato Deshidrogenasa (Lipoamida)/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/patología , Inactivación del Cromosoma X , Femenino , Humanos , Masculino , Linaje , Fenotipo , Pronóstico , Piruvato Deshidrogenasa (Lipoamida)/deficiencia , Gemelos Monocigóticos
12.
Brain ; 141(12): 3308-3318, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423015

RESUMEN

Hypokalaemic periodic paralysis is a rare genetic neuromuscular disease characterized by episodes of skeletal muscle paralysis associated with low serum potassium. Muscle fibre inexcitability during attacks of paralysis is due to an aberrant depolarizing leak current through mutant voltage sensing domains of either the sarcolemmal voltage-gated calcium or sodium channel. We report a child with hypokalaemic periodic paralysis and CNS involvement, including seizures, but without mutations in the known periodic paralysis genes. We identified a novel heterozygous de novo missense mutation in the ATP1A2 gene encoding the α2 subunit of the Na+/K+-ATPase that is abundantly expressed in skeletal muscle and in brain astrocytes. Pump activity is crucial for Na+ and K+ homeostasis following sustained muscle or neuronal activity and its dysfunction is linked to the CNS disorders hemiplegic migraine and alternating hemiplegia of childhood, but muscle dysfunction has not been reported. Electrophysiological measurements of mutant pump activity in Xenopus oocytes revealed lower turnover rates in physiological extracellular K+ and an anomalous inward leak current in hypokalaemic conditions, predicted to lead to muscle depolarization. Our data provide important evidence supporting a leak current as the major pathomechanism underlying hypokalaemic periodic paralysis and indicate ATP1A2 as a new hypokalaemic periodic paralysis gene.


Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Niño , Humanos , Parálisis Periódica Hipopotasémica/patología , Masculino , Potenciales de la Membrana , Músculo Esquelético/patología , Mutación Missense , Potasio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Xenopus laevis
13.
Brain ; 140(5): 1204-1211, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334938

RESUMEN

Leukodystrophies and genetic leukoencephalopathies are a rare group of disorders leading to progressive degeneration of cerebral white matter. They are associated with a spectrum of clinical phenotypes dominated by dementia, psychiatric changes, movement disorders and upper motor neuron signs. Mutations in at least 60 genes can lead to leukoencephalopathy with often overlapping clinical and radiological presentations. For these reasons, patients with genetic leukoencephalopathies often endure a long diagnostic odyssey before receiving a definitive diagnosis or may receive no diagnosis at all. In this study, we used focused and whole exome sequencing to evaluate a cohort of undiagnosed adult patients referred to a specialist leukoencephalopathy service. In total, 100 patients were evaluated using focused exome sequencing of 6100 genes. We detected pathogenic or likely pathogenic variants in 26 cases. The most frequently mutated genes were NOTCH3, EIF2B5, AARS2 and CSF1R. We then carried out whole exome sequencing on the remaining negative cases including four family trios, but could not identify any further potentially disease-causing mutations, confirming the equivalence of focused and whole exome sequencing in the diagnosis of genetic leukoencephalopathies. Here we provide an overview of the clinical and genetic features of these disorders in adults.


Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Adolescente , Adulto , Femenino , Humanos , Masculino , Mutación , Análisis de Secuencia de ADN , Adulto Joven
14.
Eur J Clin Invest ; 45(7): 702-10, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25950257

RESUMEN

BACKGROUND: Hypogonadism occurs in myotonic dystrophies type 1 (MD1) and type 2 (MD2). Sertoli and Leydig cell secretions, including insulin-like peptide-3 (INSL3), anti-Müllerian hormone (AMH) and inhibin B, were evaluated in male patients with MD. DESIGN: Academic settings. Forty-four male patients with MD [31 MD1, 13 MD2, aged 59 (50-64) years, median (interquartile range)], age-, sex- and BMI-matched non-MD hypogonadal patients (n = 14) and healthy controls (n = 32). Serum FSH, LH, inhibin B, AMH, testosterone (T) and INSL3 were measured; fat and muscle masses were evaluated by DEXA. RESULTS: Overt primary hypogonadism occurred in 29% of patients with MD1 and 46% of patients with MD2. Considering subclinical forms, the prevalence increased to 69% of MD1 and 100% of MD2. A half of patients with MD experienced symptoms. INSL3 levels were unaffected in most patients with MD. By contrast, AMH and inhibin B were reduced in most patients with MD and unrelated to age. Patients with MD showed increased body and visceral fat. Free T levels were negatively predicted by fat mass, and AMH and FSH levels were negatively correlated with waist/hip ratio and fat mass. AMH, inhibin B and FSH levels positively correlated with muscle strength and muscle mass. CONCLUSIONS: AMH and inhibin B secretion failures are common in male patients with MD and are more severe than Leydig cell hormones impairment. AMH and inhibin B measurements might provide clinical utility in evaluating fertility in patients with MD. Serum T, AMH and inhibin B productions are negatively influenced by increased fat mass, while AMH and inhibin B might be markers of muscle impairment.


Asunto(s)
Hipogonadismo/complicaciones , Grasa Intraabdominal/fisiología , Distrofia Miotónica/complicaciones , Obesidad Abdominal/etiología , Absorciometría de Fotón , Adulto , Hormona Antimülleriana/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Humanos , Hipogonadismo/sangre , Inhibinas/metabolismo , Insulina/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Persona de Mediana Edad , Fuerza Muscular/fisiología , Músculo Esquelético , Distrofia Miotónica/sangre , Obesidad Abdominal/sangre , Proteínas/metabolismo , Células de Sertoli/metabolismo
18.
BMJ Case Rep ; 17(3)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553017

RESUMEN

PYROXD1-associated myopathy is a rare genetic form of limb-girdle muscular dystrophy (LGMD) with only 23 previous cases having been reported in the literature. The exact role of PYROXD1 in the pathophysiology of LGMD remains unclear. We describe two brothers who presented to the neuromuscular clinic with progressive weakness of their upper and lower limbs over the preceding decades. Our case highlights how recent advancements in genetic sequencing have revolutionised the diagnostic classification process for LGMD and provided opportunities to establish diagnoses for previously unclassified myopathies. We also illustrate how the increased adoption of muscle MRI to identify disease and target muscle biopsy can provide better quality and more informative samples for classification. Finally, our report details the clinical and histopathological findings found in both cases adding valuable data to the currently limited information published on PYROXD1-associated myopathy.


Asunto(s)
Enfermedades Musculares , Distrofia Muscular de Cinturas , Masculino , Humanos , Enfermedades Musculares/patología , Músculos , Mutación
19.
EBioMedicine ; 108: 105328, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39278108

RESUMEN

BACKGROUND: Fuchs endothelial corneal dystrophy (FECD) is the most common repeat-mediated disease in humans. It exclusively affects corneal endothelial cells (CECs), with ≤81% of cases associated with an intronic TCF4 triplet repeat (CTG18.1). Here, we utilise optical genome mapping (OGM) to investigate CTG18.1 tissue-specific instability to gain mechanistic insights. METHODS: We applied OGM to a diverse range of genomic DNAs (gDNAs) from patients with FECD and controls (n = 43); CECs, leukocytes and fibroblasts. A bioinformatics pipeline was developed to robustly interrogate CTG18.1-spanning DNA molecules. All results were compared with conventional polymerase chain reaction-based fragment analysis. FINDINGS: Analysis of bio-samples revealed that expanded CTG18.1 alleles behave dynamically, regardless of cell-type origin. However, clusters of CTG18.1 molecules, encompassing ∼1800-11,900 repeats, were exclusively detected in diseased CECs from expansion-positive cases. Additionally, both progenitor allele size and age were found to influence the level of leukocyte-specific CTG18.1 instability. INTERPRETATION: OGM is a powerful tool for analysing somatic instability of repeat loci and reveals here the extreme levels of CTG18.1 instability occurring within diseased CECs underpinning FECD pathophysiology, opening up new therapeutic avenues for FECD. Furthermore, these findings highlight the broader translational utility of FECD as a model for developing therapeutic strategies for rarer diseases similarly attributed to somatically unstable repeats. FUNDING: UK Research and Innovation, Moorfields Eye Charity, Fight for Sight, Medical Research Council, NIHR BRC at Moorfields Eye Hospital and UCL Institute of Ophthalmology, Grantová Agentura Ceské Republiky, Univerzita Karlova v Praze, the National Brain Appeal's Innovation Fund and Rosetrees Trust.


Asunto(s)
Distrofia Endotelial de Fuchs , Factor de Transcripción 4 , Humanos , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/patología , Mapeo Cromosómico , Alelos , Especificidad de Órganos/genética , Expansión de Repetición de Trinucleótido , Masculino , Inestabilidad Genómica , Femenino , Repeticiones de Trinucleótidos/genética , Persona de Mediana Edad , Anciano
20.
Eur J Hum Genet ; 32(9): 1053-1064, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38664571

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common form of hereditary myopathy. Sixty per cent of the world's population lives in Asia, so a significant percentage of the world's FSHD participants is expected to live there. To date, most FSHD studies have involved individuals of European descent, yet small-scale studies of East-Asian populations suggest that the likelihood of developing FSHD may vary. Here, we present the first genetically confirmed FSHD cohort of Indian ancestry, which suggests a pathogenic FSHD1 allele size distribution intermediate between European and North-East Asian populations and more asymptomatic carriers of 4 unit and 5 unit FSHD1 alleles than observed in European populations. Our data provides important evidence of differences relevant to clinical diagnostics and underscores the need for global FSHD participation in research and trial-ready Indian FSHD cohorts.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , India , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios de Cohortes , Alelos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA