Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 10(23): 8077-84, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15585643

RESUMEN

PURPOSE: Because of the potential for affecting multiple signaling pathways, inhibition of Hsp90 may provide a strategy for enhancing tumor cell radiosensitivity. Therefore, we have investigated the effects of the orally bioavailable Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) on the radiosensitivity of human tumor cells in vitro and grown as tumor xenografts. EXPERIMENTAL DESIGN: The effect of 17-DMAG on the levels of three proteins (Raf-1, ErbB2, and Akt) previously implicated in the regulation of radiosensitivity was determined in three human solid tumor cell lines. A clonogenic assay was then used to evaluate cell survival after exposure to 17-DMAG followed by irradiation. For mechanistic insight, the G(2)- and S-phase checkpoints were evaluated in 17-DMAG-treated cells. Finally, the effect of in vivo administration of 17-DMAG in combination with radiation on the growth rate of xenograft tumors was determined. RESULTS: 17-DMAG exposure reduced the levels of the three radiosensitivity-associated proteins in a cell line-specific manner with ErbB2 being the most susceptible. Corresponding concentrations of 17-DMAG enhanced the radiosensitivity of each of the tumor cell lines. This sensitization seemed to be the result of a 17-DMAG-mediated abrogation of the G(2)- and S-phase cell cycle checkpoints. The oral administration of 17-DMAG to mice bearing tumor xenografts followed by irradiation resulted in a greater than additive increase in tumor growth delay. CONCLUSIONS: These data indicate that 17-DMAG enhances the in vitro and in vivo radiosensitivity of human tumor cells. The mechanism responsible seems to involve the abrogation of radiation-induced G(2)- and S-phase arrest.


Asunto(s)
Supervivencia Celular , Fase G2 , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Quinonas/farmacología , Tolerancia a Radiación , Fase S , Administración Oral , Animales , Benzoquinonas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Femenino , Fase G2/efectos de los fármacos , Fase G2/efectos de la radiación , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/radioterapia , Humanos , Immunoblotting , Lactamas Macrocíclicas , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-raf/metabolismo , Quinonas/administración & dosificación , Receptor ErbB-2/metabolismo , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Timidina/metabolismo , Trasplante Heterólogo , Ensayo de Tumor de Célula Madre
2.
Mol Cancer Ther ; 3(4): 409-16, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078984

RESUMEN

Flavopiridol is a cyclin-dependent kinase (CDK) inhibitor, which has recently entered clinical trials. However, when administered as a single agent against solid tumors, the antitumor actions of flavopiridol have been primarily cytostatic. Given its reported effects on cell cycle regulation, transcription, and apoptosis, flavopiridol may also influence cellular radioresponse. Thus, to evaluate the potential for combining this cyclin-dependent kinase inhibitor with radiation as a cancer treatment strategy, we have investigated the effects of flavopiridol on the radiation sensitivity of two human prostate cancer cell lines (DU145 and PC3). The data presented here indicate that exposure to flavopiridol (60-90 nM) after irradiation enhanced the radiosensitivity of both DU145 and PC3 cells. This sensitization occurred in the absence of significant reductions in cell proliferation, retinoblastoma protein phosphorylation, or P-TEFb activity. Moreover, the post-irradiation addition of flavopiridol had no effect on radiation-induced apoptosis or the activation of the G2 cell cycle checkpoint. However, flavopiridol did modify the time course of gammaH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced gammaH2AX foci at 6 h, at 24 h after irradiation, the number of cells expressing gammaH2AX foci was significantly greater in the flavopiridol-treated cells. These results indicate that flavopiridol can enhance radiosensitivity of human tumor cells and suggest that this effect may involve an inhibition of DNA repair.


Asunto(s)
Antineoplásicos/farmacología , Flavonoides/farmacología , Histonas/metabolismo , Piperidinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Ciclina D1/metabolismo , Reparación del ADN/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Proteína de Retinoblastoma/metabolismo
3.
Int J Nanomedicine ; 9: 1641-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729700

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.


Asunto(s)
Rastreo Celular/métodos , Dextranos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita , Células Madre/citología , Animales , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA