Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38724283

RESUMEN

Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.


Asunto(s)
Potenciales de Acción , Células Madre Pluripotentes Inducidas , Neuronas , Terminales Presinápticos , Sinapsis , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Potenciales de Acción/fisiología , Sinapsis/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Transmisión Sináptica/fisiología , Células Cultivadas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología
2.
Brain ; 146(5): 1812-1820, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36866449

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common subtype of autoimmune encephalitis characterized by a complex neuropsychiatric syndrome usually including memory impairment. Patients develop an intrathecal immune response against NMDARs with antibodies that presumably bind to the amino-terminal domain of the GluN1 subunit. The therapeutic response to immunotherapy is often delayed. Therefore, new therapeutic approaches for fast neutralization of NMDAR antibodies are needed. Here, we developed fusion constructs consisting of the Fc part of immunoglobulin G and the amino-terminal domains of either GluN1 or combinations of GluN1 with GluN2A or GluN2B. Surprisingly, both GluN1 and GluN2 subunits were required to generate high-affinity epitopes. The construct with both subunits efficiently prevented NMDAR binding of patient-derived monoclonal antibodies and of patient CSF containing high-titre NMDAR antibodies. Furthermore, it inhibited the internalization of NMDARs in rodent dissociated neurons and human induced pluripotent stem cell-derived neurons. Finally, the construct stabilized NMDAR currents recorded in rodent neurons and rescued memory defects in passive-transfer mouse models using intrahippocampal injections. Our results demonstrate that both GluN1 and GluN2B subunits contribute to the main immunogenic region of the NMDAR and provide a promising strategy for fast and specific treatment of NMDAR encephalitis, which could complement immunotherapy.


Asunto(s)
Encefalitis , Enfermedad de Hashimoto , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Autoanticuerpos/metabolismo
3.
Hippocampus ; 26(3): 301-18, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26332578

RESUMEN

The microtubule-associated protein tau, in its hyperphosphorylated form, is the major component of paired helical filaments and other aggregates in neurodegenerative disorders commonly referred to as "tauopathies". Recent evidence, however, indicates that mislocalization of hyperphosphorylated tau to subsynaptic sites leads to synaptic impairment and cognitive decline even long before formation of tau aggregates and neurodegeneration occur. A similar, but reversible hyperphosphorylation of tau occurs under physiologically controlled conditions during hibernation. Here, we study the hibernating Golden hamster (Syrian hamster, Mesocricetus auratus). A transient spine reduction was observed in the hippocampus, especially on apical dendrites of hippocampal CA3 pyramidal cells, but not on their basal dendrites. This distribution of structural synaptic regression was correlated to the distribution of phosphorylated tau, which was highly abundant in apical dendrites but hardly detectable in basal dendrites. Surprisingly, hippocampal memory assessed by a labyrinth maze was not affected by hibernation. The present study suggests a role for soluble hyperphosphorylated tau in the process of reversible synaptic regression, which does not lead to memory impairment during hibernation. We hypothesize that tau phosphorylation associated spine regression might mainly affect unstable/dynamic spines while sparing established/stable spines.


Asunto(s)
Espinas Dendríticas/metabolismo , Hibernación/fisiología , Hipocampo/citología , Memoria/fisiología , Neuronas/ultraestructura , Proteínas tau/metabolismo , Animales , Nivel de Alerta/fisiología , Cricetinae , Homólogo 4 de la Proteína Discs Large , Femenino , Hipocampo/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Aprendizaje por Laberinto , Proteínas de la Membrana/metabolismo , Mesocricetus/fisiología , Actividad Motora , Alineación de Secuencia , Sinapsis/fisiología , Factores de Tiempo , Letargo/fisiología
4.
Dev Growth Differ ; 57(5): 369-377, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25988525

RESUMEN

Electroporation is a useful technique to study gene function during development but its broad application is hampered due to the expensive equipment needed. We describe the construction of a transportable, simple and inexpensive electroporator delivering square pulses with varying length and amplitude. The device was successfully used for in utero electroporation in mouse with a performance comparable to that of commercial products.

5.
Am J Physiol Regul Integr Comp Physiol ; 305(5): R478-89, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824962

RESUMEN

The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".


Asunto(s)
Encéfalo/fisiología , Hibernación/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Proteínas tau/metabolismo , Animales , Humanos , Modelos Neurológicos , Fosforilación
6.
Science ; 382(6667): 223-230, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824668

RESUMEN

Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.


Asunto(s)
Transporte Axonal , Neuronas , Fosfatos de Fosfatidilinositol , Vesículas Sinápticas , Humanos , Transporte Axonal/fisiología , Cinesinas/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
7.
Front Cell Dev Biol ; 9: 670943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604207

RESUMEN

PIP3 dynamics observed in membranes are responsible for the protruding edge formation in cancer and amoeboid cells. The mechanisms that maintain those PIP3 domains in three-dimensional space remain elusive, due to limitations in observation and analysis techniques. Recently, a strong relation between the cell geometry, the spatial confinement of the membrane, and the excitable signal transduction system has been revealed by Hörning and Shibata (2019) using a novel 3D spatiotemporal analysis methodology that enables the study of membrane signaling on the entire membrane (Hörning and Shibata, 2019). Here, using 3D spatial fluctuation and phase map analysis on actin polymerization inhibited Dictyostelium cells, we reveal a spatial asymmetry of PIP3 signaling on the membrane that is mediated by the contact perimeter of the plasma membrane - the spatial boundary around the cell-substrate adhered area on the plasma membrane. We show that the contact perimeter guides PIP3 waves and acts as a pinning site of PIP3 phase singularities, that is, the center point of spiral waves. The contact perimeter serves as a diffusion influencing boundary that is regulated by a cell size- and shape-dependent curvature. Our findings suggest an underlying mechanism that explains how local curvature can favor actin polymerization when PIP3 domains get pinned at the curved protrusive membrane edges in amoeboid cells.

8.
J Neural Transm (Vienna) ; 116(3): 345-50, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19184336

RESUMEN

In Alzheimer's disease and related disorders, hyperphosphorylation of tau is associated with an increased activity of cyclin dependent kinase 5 (cdk5). Elevated cdk5 activity is thought to be due to the formation of p25 and thereby represents a critical element in the dysregulation of tau phosphorylation under pathological conditions. However, there is still a controversy regarding the correlation of p25 generation and tau pathology. Recently, we demonstrated physiological, paired helical filament-like tau phosphorylation that reversibly occurs in hibernating mammals. Here we used this model to test whether the tau phosphorylation in hibernation is associated with the formation of p25. Analysing brain material of arctic ground squirrels and Syrian hamsters we found no evidence for a hibernation dependent generation of p25. Hence, we suppose that phosphorylation of tau does not require the formation of p25. Instead we suggest that the truncation of p35 to p25 represents a characteristic of pathological alterations and may contribute to aggregation and deposition of hyperphosphorylated tau.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hibernación , Proteínas del Tejido Nervioso/metabolismo , Proteínas tau/metabolismo , Animales , Western Blotting , Cricetinae , Femenino , Masculino , Fosforilación , Polímeros/metabolismo , Sciuridae
9.
Sci Rep ; 9(1): 19413, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857624

RESUMEN

Recently, there has been rapid expansion in the field of micro-connectomics, which targets the three-dimensional (3D) reconstruction of neuronal networks from stacks of two-dimensional (2D) electron microscopy (EM) images. The spatial scale of the 3D reconstruction increases rapidly owing to deep convolutional neural networks (CNNs) that enable automated image segmentation. Several research teams have developed their own software pipelines for CNN-based segmentation. However, the complexity of such pipelines makes their use difficult even for computer experts and impossible for non-experts. In this study, we developed a new software program, called UNI-EM, for 2D and 3D CNN-based segmentation. UNI-EM is a software collection for CNN-based EM image segmentation, including ground truth generation, training, inference, postprocessing, proofreading, and visualization. UNI-EM incorporates a set of 2D CNNs, i.e., U-Net, ResNet, HighwayNet, and DenseNet. We further wrapped flood-filling networks (FFNs) as a representative 3D CNN-based neuron segmentation algorithm. The 2D- and 3D-CNNs are known to demonstrate state-of-the-art level segmentation performance. We then provided two example workflows: mitochondria segmentation using a 2D CNN and neuron segmentation using FFNs. By following these example workflows, users can benefit from CNN-based segmentation without possessing knowledge of Python programming or CNN frameworks.

10.
Front Cell Neurosci ; 13: 404, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555099

RESUMEN

Understanding the role of axons in neuronal information processing is a fundamental task in neuroscience. Over the last years, sophisticated patch-clamp investigations have provided unexpected and exciting data on axonal phenomena and functioning, but there is still a need for methods to investigate full axonal arbors at sufficient throughput. Here, we present a new method for the simultaneous mapping of the axonal arbors of a large number of individual neurons, which relies on their extracellular signals that have been recorded with high-density microelectrode arrays (HD-MEAs). The segmentation of axons was performed based on the local correlation of extracellular signals. Comparison of the results with both, ground truth and receiver operator characteristics, shows that the new segmentation method outperforms previously used methods. Using a standard HD-MEA, we mapped the axonal arbors of 68 neurons in <6 h. The fully automated method can be extended to new generations of HD-MEAs with larger data output and is estimated to provide data of axonal arbors of thousands of neurons within recording sessions of a few hours.

11.
Front Neuroanat ; 13: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379517

RESUMEN

Reversible formation of PHF-like phosphorylated tau, an early feature of Alzheimer's disease (AD) was previously shown to occur in torpor during hibernation in the Golden hamster (Syrian hamster, Mesocricetus auratus). Here, we tackled the question to what extent hibernating Golden hamsters can serve as a model for the early stage of AD. During early AD, anosmia, the loss of olfactory function, is a common and typical feature. We, thus, investigated tau phosphorylation, synaptic plasticity and behavioral physiology of the olfactory system during hibernation. Tau was phosphorylated on several AD-relevant epitopes, and distribution of PHF-like phosphorylated tau in the olfactory bulb was quite similar to what is seen in AD. Tau phosphorylation was not associated with a destabilization of microtubules and did not lead to fibril formation. Previously, we observed a transient spine reduction in pyramidal cells in the hippocampus, which is correlated with the distribution of phosphorylated tau. Here we show that granule cells in the olfactory bulb are devoid of phosphorylated tau and maintain their spines number during torpor. No reduction of synaptic proteins was observed. However, hibernation did impair the recall performance in a two-odor discrimination task. We conclude that hibernation is associated with a specific olfactory memory deficit, which might not be attributed to the formation of PHF-like phosphorylated tau within the olfactory bulb. We discuss a possible involvement of modulatory input provided by cholinergic neurons in the basal forebrain, which are affected by hibernation.

12.
Front Neurosci ; 10: 421, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683541

RESUMEN

High-density microelectrode arrays (HDMEA) have been recently introduced to study principles of neural function at high spatial resolution. However, the exact nature of the experimentally observed extracellular action potentials (EAPs) is still incompletely understood. The soma, axon and dendrites of a neuron can all exhibit regenerative action potentials that could be sensed with HDMEA electrodes. Here, we investigate the contribution of distinct neuronal sources of activity in HDMEA recordings from low-density neuronal cultures. We recorded EAPs with HDMEAs having 11,011 electrodes and then fixed and immunostained the cultures with ß3-tubulin for high-resolution fluorescence imaging. Immunofluorescence images overlaid with the activity maps showed EAPs both at neuronal somata and distal neurites. Neuritic EAPs had mostly narrow triphasic shapes, consisting of a positive, a pronounced negative peak and a second positive peak. EAPs near somata had wide monophasic or biphasic shapes with a main negative peak, and following optional positive peak. We show that about 86% of EAP recordings consist of somatic spikes, while the remaining 14% represent neuritic spikes. Furthermore, the adaptation of the waveform shape during bursts of these neuritic spikes suggested that they originate from axons, rather than from dendrites. Our study improves the understanding of HDMEA signals and can aid in the identification of the source of EAPs.

13.
Front Neurosci ; 8: 423, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610364

RESUMEN

Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.

14.
PLoS One ; 6(1): e14530, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21267079

RESUMEN

Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational changes of highly phosphorylated tau protein that are typically related to neuropathological alterations. The particular hibernation characteristics of black bears with a continuous torpor period and an only slightly decreased body temperature, therefore, potentially reflects the limitations of this adaptive reaction pattern and, thus, might indicate a transitional state of a physiological process.


Asunto(s)
Metabolismo Basal , Hibernación , Proteínas tau/metabolismo , Animales , Temperatura Corporal , Encéfalo/metabolismo , Cricetinae , Cinética , Mesocricetus , Fosforilación , Sciuridae , Ursidae
15.
J Comp Neurol ; 518(13): 2538-53, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20503426

RESUMEN

Tau is a microtubule-associated protein expressed predominantly in neurons. The transcript of the tau gene is alternatively spliced. Resulting isoforms contain three or four microtubule-binding repeats. The shortest tau isoform contains only three repeats (3R) and is expressed at birth. Previous data on rodents suggested that this isoform is no longer expressed during adulthood. It is replaced by tau isoforms containing four repeats (4R). The adult 4R tau isoforms bind to microtubules with higher affinity than 3R tau isoforms. Therefore, this isoform switch may reflect a need for more dynamic microtubules during development. Recently, we observed in rats that the 3R tau isoform is transiently expressed in adult neurogenesis. Subsequently, we performed an immunohistochemical labeling of the 3R tau isoform on serial sections of the adult rat brain. Interestingly, the 3R tau isoform is not only expressed in neuronal precursor cells. It is also present in mature neurons of the olfactory bulb, magnocellular neurosecretory system, posterolateral hypothalamus, locus coeruleus, raphe nucleus, solitary nucleus, medial septum and diagonal band, olfactory tuberculus, and piriform/olfactory cortex. This expression pattern is similar to that observed for the polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) and the microtubule-associated proteins doublecortin and collapsin response mediating protein (CRMP-4/TUC-4/Ulip-1), which are also highly expressed during early development. The retention of a juvenile phenotype in some neurons might be associated with a functionally significant neuronal plasticity.


Asunto(s)
Encéfalo/metabolismo , Proteínas tau/metabolismo , Células Madre Adultas/metabolismo , Envejecimiento , Animales , Western Blotting , Proteína Doblecortina , Femenino , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Neuronas/metabolismo , Fotomicrografía , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar
16.
Int J Dev Neurosci ; 27(6): 591-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19540327

RESUMEN

Neuronal morphology and axonal growth during development are correlated to specific expression of various microtubule-associated protein tau isoforms. Using RT-PCR and Western blotting we found the unexpected result that the shift from fetal towards adult isoforms does not differ between rat cerebral cortex and cerebellum, two temporally differently developing areas. By immunohistochemistry we observed a cell type specific isoform expression during development and adulthood. The developmental expression of tau isoforms was compared to the appearance of stable microtubules assessed by the immunohistochemical detection of tubulin modifications. The tau isoform shift shows an apparent disconnect to neurogenesis, migration and volume growth, but coincides with the formation of synapses and the appearance of stable microtubules.


Asunto(s)
Cerebelo/embriología , Cerebelo/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Animales , Diferenciación Celular/fisiología , Cerebelo/ultraestructura , Corteza Cerebral/ultraestructura , Femenino , Inmunohistoquímica , Masculino , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Neurogénesis/fisiología , Neuronas/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas WF , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinapsis/metabolismo , Sinapsis/ultraestructura , Tubulina (Proteína)/metabolismo , Proteínas tau/genética
17.
Hippocampus ; 17(2): 98-102, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17183532

RESUMEN

Tau is a microtubule-associated protein with a developmentally regulated expression of multiple isoforms. The neonatal isoform is devoid of two amino terminal inserts and contains only three instead of four microtubule-binding repeats (0N/3R-tau). We investigated the temporal expression pattern of 0N-tau and 3R-tau in the rat hippocampus. After the decline of 0N- and 3R-tau immunoreactivity during the postnatal development both isoforms remain highly expressed in a few cells residing beneath the granule cell layer. Coexpression of the polysialylated neuronal cell adhesion molecule, doublecortin, and incorporated bromodeoxyuridine showed that these cells are proliferating progenitor cells. In contrast mature granule cells express the adult tau protein isoform containing one aminoterminal insert domain (1N-tau). Therefore a shift in tau isoform expression takes place during adult neurogenesis, which might be related to migration, differentiation, and integration in the granule cell layer. A model for studying shifts in tau isoform expression in a defined subset of neurons might help to understand the etiology of tauopathies, when isoform composition is crucial for neurodegeneration, as in Pick's disease or FTDP-17.


Asunto(s)
Embrión de Mamíferos/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Proteínas tau/biosíntesis , Animales , Animales Recién Nacidos , Antimetabolitos , Biomarcadores , Bromodesoxiuridina , Calbindinas , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Exones/inmunología , Femenino , Técnica del Anticuerpo Fluorescente , Isomerismo , Masculino , Proteínas Asociadas a Microtúbulos/biosíntesis , Molécula L1 de Adhesión de Célula Nerviosa/biosíntesis , Neuroglía/metabolismo , Neuropéptidos/biosíntesis , Embarazo , Ratas , Ratas Endogámicas WF , Proteína G de Unión al Calcio S100/biosíntesis , Ácidos Siálicos/biosíntesis
18.
Eur J Neurosci ; 25(1): 69-80, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17241268

RESUMEN

Neurofibrillar tangles made up of 'paired helical filaments' (PHFs) consisting of hyperphosphorylated microtubule-associated protein tau are major hallmarks of Alzheimer's disease (AD). Tangle formation selectively affects certain neuronal types and systematically progresses throughout numerous brain areas, which reflects a hierarchy of neuronal vulnerability and provides the basis for the neuropathological staging of disease severity. Mechanisms underlying this selective neuronal vulnerability are unknown. We showed previously that reversible PHF-like phosphorylation of tau occurs during obligate hibernation. Here we extend these findings to facultative hibernators such as Syrian hamsters (Mesocricetus auratus) forced into hibernation. In this model, we showed in the basal forebrain projection system that cholinergic neurons are selectively affected by PHF-like phosphorylated tau, while gamma-aminobutyric acid (GABA)ergic neurons are largely spared, which shows strong parallels to the situation in AD. Formation of PHF-tau in these neurons apparently does not affect their function as pacemaker for terminating hibernation. We conclude that although formation of PHF-like phosphorylated tau in the mammalian brain follows a certain hierarchy, affecting some neurons more frequently than others, it is not necessarily associated with impaired neuronal function and viability. This indicates a more general link between PHF-like phosphorylation of tau and the adaptation of neurons under conditions of a 'vita minima'.


Asunto(s)
Acetilcolina/metabolismo , Hibernación/fisiología , Neuronas/fisiología , Prosencéfalo/citología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Western Blotting/métodos , Proteínas de Unión al Calcio/metabolismo , Colina O-Acetiltransferasa/metabolismo , Cricetinae , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Fosforilación , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA