RESUMEN
BACKGROUND: Glutaric aciduria type 1(GA-1) is an inherited cerebral organic aciduria. Untreated patients with GA-1 have a risk of acute encephalopathic crises during the first 6 years of life. In so far as GA-1 desperately does not exist in Turkish newborn screening (NBS) program, most patients in our study were late-diagnosed. METHOD: This study included 41 patients diagnosed with acylcarnitine profile, urinary organic acids, mutation analyses in the symptomatic period. We presented with clinical, neuroradiological, and molecular data of our 41 patients. RESULTS: The mean age at diagnosis was 14.8 ± 13.9 (15 days to 72 months) and, high blood glutaconic acid, glutarylcarnitine and urinary glutaric acid (GA) levels in 41 patients were revealed. Seventeen different mutations in the glutaryl-CoA dehydrogenase gene were identified, five of which were novel. The patients, most of whom were late-diagnosed, had a poor neurological outcome. Treatment strategies made a little improvement in dystonia and the frequency of encephalopathic attacks. CONCLUSION: All GA-1 patients in our study were severely affected since they were late-diagnosed, while others show that GA-1 is a treatable metabolic disorder if it is diagnosed with NBS. This study provides an essential perspective of the severe impact on GA-1 patients unless it is diagnosed with NBS. We immediately advocate GA-1 to be included in the Turkish NBS.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Errores Innatos del Metabolismo de los Aminoácidos/genética , Glutaratos , Glutaril-CoA Deshidrogenasa/deficiencia , Humanos , Recién Nacido , Tamizaje NeonatalRESUMEN
PURPOSE: Pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause an autosomal recessive disorder with a wide range of symptoms affecting liver, skeletal system, and brain, among others. There is a continuously growing number of patients but a lack of systematic and quantitative analysis. METHODS: Individuals with biallelic variants in NBAS were recruited within an international, multicenter study, including novel and previously published patients. Clinical variables were analyzed with log-linear models and visualized by mosaic plots; facial profiles were investigated via DeepGestalt. The structure of the NBAS protein was predicted using computational methods. RESULTS: One hundred ten individuals from 97 families with biallelic pathogenic NBAS variants were identified, including 26 novel patients with 19 previously unreported variants, giving a total number of 86 variants. Protein modeling redefined the ß-propeller domain of NBAS. Based on the localization of missense variants and in-frame deletions, three clinical subgroups arise that differ significantly regarding main clinical features and are directly related to the affected region of the NBAS protein: ß-propeller (combined phenotype), Sec39 (infantile liver failure syndrome type 2/ILFS2), and C-terminal (short stature, optic atrophy, and Pelger-Huët anomaly/SOPH). CONCLUSION: We define clinical subgroups of NBAS-associated disease that can guide patient management and point to domain-specific functions of NBAS.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Proteínas de Neoplasias/genética , Alelos , Encéfalo/patología , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/patología , Humanos , Lactante , Hígado/patología , Trasplante de Hígado/efectos adversos , Masculino , Músculo Esquelético/patología , Mutación Missense/genética , FenotipoRESUMEN
Autocrine growth hormone (GH) signaling is a promoting factor for breast cancer via triggering abnormal cell growth, proliferation, and metastasis, drug resistance. Curcumin (diferuloylmethane), a polyphenol derived from turmeric (Curcuma longa), has anti-proliferative, anti-carcinogenic, anti-hormonal effect via acting on PI3K/Akt, NF-κB and JAK/STAT signaling. Forced GH expression induced epithelial mesenchymal transition (EMT) through stimulation of miR-182-96-183 cluster expression in breast cancer cells. This study aimed to investigate the role of NF-κB signaling and miR-182-96-183 cluster expression profile on autocrine GH-mediated curcumin resistance, which was prevented by time-dependent curcumin treatment in T47D breast cancer cells. Dose- and time-dependent effect of curcumin on T47D wt and GH+ breast cancer cells were evaluated by MTT cell viability and trypan blue assay. Apoptotic effect of curcumin was determined by PI and Annexin V/PI FACS flow analysis. Immunoblotting performed to investigate the effect of curcumin on PI3K/Akt/MAPK, NF-κB signaling. miR182-96-183 cluster expression profile was observed by qRT-PCR. Overexpression of GH triggered resistant profile against curcumin (20 µM) treatment for 24 h, but this resistance was accomplished following 48 h curcumin exposure. Concomitantly, forced GH induced invasion and metastasis through EMT and NF-κB activation were prevented by long-term curcumin exposure in T47D cells. Moreover, 48 h curcumin treatment prevented the autocrine GH-mediated miR-182-96-183 cluster expression stimulation in T47D cells. In consequence, curcumin treatment for 48 h, prevented autocrine GH-triggered invasion-metastasis, EMT activation through inhibiting NF-κB signaling and miR-182-96-183 cluster expression and induced apoptotic cell death by modulating Bcl-2 family members in T47D breast cancer cells.
Asunto(s)
Neoplasias de la Mama/metabolismo , Curcumina/farmacología , Hormona de Crecimiento Humana/farmacología , Apoptosis/efectos de los fármacos , Comunicación Autocrina/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Curcuma , Curcumina/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Biotinidase deficiency (BD) is an autosomal recessive inborn error of metabolism characterized by neurologic and cutaneous symptoms and can be detected by newborn screening. Newborn screening for BD was implemented in Turkey at the end of 2008. METHODS: In total, 203 patients who were identified among the infants detected by the newborn screening were later confirmed to have BD through measurement of serum biotinidase activity. We also performed BTD mutation analysis to characterize the genetic profile. RESULTS: Twenty-seven mutations were identified. The most commonly found variants were c.1330G>C (p.D444H), c.1595C>T (p.T532M), c.470G>A (p.R157H), and c.198_104delGCGGCTGinsTCC (p.C33Ffs ) with allele frequencies of 0.387, 0.175, 0.165 and 0.049, respectively. Three novel pathogenic and likely pathogenic variants were identified: p.W140* (c.419G>A), p.S319F (c.956C>T) and p.L69Hfs*24 (c.192_193insCATC). We also identified three mutations reported in just one patient in the past (p.V442Sfs*59 [c.1324delG], p.H447R [c.1340A>G] and p.198delV [c.592_594delGTC]). Although all of the patients were asymptomatic under the treatment of biotin, only one patient, who had the novel c.419G>A homozygous mutation became symptomatic during an episode of acute gastroenteritis with a presentation of ketosis and metabolic acidosis. Among the screened patients, 156 had partial and 47 had profound BD. CONCLUSIONS: We determined the mutation spectra of BD from the southeastern part of Turkey. The results of this study add three more mutations to the total number of mutations described as causing BD.