Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 51(2): 258-271.e5, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31350176

RESUMEN

Macrophage plasticity is critical for normal tissue repair to ensure transition from the inflammatory to the proliferative phase of healing. We examined macrophages isolated from wounds of patients afflicted with diabetes and of healthy controls and found differential expression of the methyltransferase Setdb2. Myeloid-specific deletion of Setdb2 impaired the transition of macrophages from an inflammatory phenotype to a reparative one in normal wound healing. Mechanistically, Setdb2 trimethylated histone 3 at NF-κB binding sites on inflammatory cytokine gene promoters to suppress transcription. Setdb2 expression in wound macrophages was regulated by interferon (IFN) ß, and under diabetic conditions, this IFNß-Setdb2 axis was impaired, leading to a persistent inflammatory macrophage phenotype in diabetic wounds. Setdb2 regulated the expression of xanthine oxidase and thereby the uric acid (UA) pathway of purine catabolism in macrophages, and pharmacologic targeting of Setdb2 or the UA pathway improved healing. Thus, Setdb2 regulates macrophage plasticity during normal and pathologic wound repair and is a target for therapeutic manipulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Macrófagos/fisiología , Proteínas Nucleares/metabolismo , Anciano , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Nucleares/genética , Fenotipo , Ácido Úrico/metabolismo , Cicatrización de Heridas
2.
Genet Epidemiol ; 47(4): 303-313, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36821788

RESUMEN

Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 1/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Modelos Genéticos , Factores de Riesgo , Herencia Multifactorial/genética
3.
Genome Res ; 31(12): 2258-2275, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815310

RESUMEN

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

4.
Environ Res ; 263(Pt 3): 120183, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426451

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have been detected in the blood of humans and animals worldwide. Exposure to some PFAS are associated with multiple adverse pregnancy outcomes. Existing literature has identified a strong association with PFAS exposure and metabolic dysfunction in humans, including modification of lipid metabolism. Using a subset of the Michigan Mother-Infant Pairs cohort (n = 95), this study investigated associations between first trimester plasma levels of PFAS and maternal lipids and metabolites in the first trimester (T1), at the time of delivery (T3), and in the infant cord blood (CB) using untargeted shotgun lipidomics and metabolomics. Identifying PFAS-induced alterations in the maternal lipid- or metabolome at specific timepoints may help elucidate windows of susceptibility to adverse pregnancy outcomes. Out of 9 PFAS measured, 7 were detected in at least 20% of samples and were used for further analyses. PFOS and PFHxS were measured at the highest concentrations with medians of 5.76 ng/mL and 3.33 ng/mL, respectively. PFOA, PFNA, and PFDA had lower measured values with medians of <1.2 ng/mL. PFHxS concentrations were positively associated with monounsaturated sphingomyelins (SMs) in T1 maternal plasma in adjusted models, determined by an adjusted p-value (q) < 0.1. PFHxS was positively associated with saturated and polyunsaturated SMs and inversely associated with saturated diacylglycerols in T1. Following metabolite-specific analysis, two mono-unsaturated diacylglycerols with carbon chain lengths of 32 and 35 were inversely associated with PFHxS in T1. In T3, only the association between PFHxS and SMs remained, but was attenuated. In addition, PFDA was associated with an increase in polyunsaturated plasmenyl-phosphatidylethanolamines in T3. No associations were identified between PFAS and infant cord blood lipids. Continued research into PFAS associated disruptions in lipid metabolism at sensitive stages of gestation may provide insight into the mechanisms that lead to adverse birth and pregnancy outcomes.

5.
Am J Physiol Endocrinol Metab ; 325(5): E466-E479, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729021

RESUMEN

Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Gotas Lipídicas , Adulto , Humanos , Obesidad/terapia , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología , Lípidos
6.
J Physiol ; 600(9): 2127-2146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35249225

RESUMEN

Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m-2 ) were assigned to 12 weeks (4 days week-1 ) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity. KEY POINTS: Exercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear. We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT). The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue. These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.


Asunto(s)
Ejercicio Físico , Obesidad , Tejido Adiposo/metabolismo , Adulto , Ejercicio Físico/fisiología , Ácidos Grasos/metabolismo , Humanos , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Pérdida de Peso
7.
J Nutr ; 151(10): 2868-2881, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34255076

RESUMEN

Evaluating the postprandial response to a dietary challenge containing all macronutrients-carbohydrates, lipids, and protein-may provide stronger insights of metabolic health than a fasted measurement. Metabolomic profiling deepens the understanding of the homeostatic and adaptive response to a dietary challenge by classifying multiple metabolic pathways and biomarkers. A total of 26 articles were identified that measure the human blood metabolome or lipidome response to a mixed-macronutrient challenge. Most studies were cross-sectional, exploring the baseline and postprandial response to the dietary challenge. Large variations in study designs were reported, including the macronutrient and caloric composition of the challenge and the delivery of the challenge as a liquid shake or a solid meal. Most studies utilized a targeted metabolomics platform, assessing only a particular metabolic pathway, however, several studies utilized global metabolomics and lipidomics assays demonstrating the expansive postprandial response of the metabolome. The postprandial response of individual amino acids was largely dependent on the amino acid composition of the test meal, with the exception of alanine and proline, 2 nonessential amino acids. Long-chain fatty acids and unsaturated long-chain acylcarnitines rapidly decreased in response to the dietary challenges, representing the switch from fat to carbohydrate oxidation. Studies were reviewed that assessed the metabolome response in the context of obesity and metabolic diseases, providing insight on how weight status and disease influence the ability to cope with a nutrient load and return to homeostasis. Results demonstrate that the flexibility to respond to a substrate load is influenced by obesity and metabolic disease and flexibility alterations will be evident in downstream metabolites of fat, carbohydrate, and protein metabolism. In response, we propose suggestions for standardization between studies with the potential of creating a study exploring the postprandial response to a multitude of challenges with a variety of macronutrients.


Asunto(s)
Metaboloma , Proyectos de Investigación , Humanos , Metabolómica , Nutrientes , Periodo Posprandial
8.
Pediatr Res ; 89(5): 1310-1315, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32492693

RESUMEN

BACKGROUND: Psychosocial stress in early childhood is associated with adult obesity and cardiometabolic disease. The association of psychosocial stress with the metabolome in childhood is unknown. METHOD: Low-income children (n = 28, mean age 1.8 years), recruited from the community, participated. Psychosocial stress was measured by diurnal salivary cortisol (cortisol intercept and slope) and by mother-reported chaos in the home using the Confusion, Hubbub, and Order Scale (CHAOS). At mean age 6.1 years, anthropometry was collected and fasting metabolites measured using an untargeted metabolomics and shotgun lipidomics platform. RESULTS: Cortisol slope was inversely associated with fatty acid (FA) 20:3, FA 20:4 and polyunsaturated fatty acids (PUFA) metabolites. A higher CHAOS score was associated with lower very long-chain PUFA metabolites and a trend towards lower long-chain PUFA containing triglycerides. CONCLUSIONS: Psychosocial stress in early childhood, measured with both biological markers and parent report, was associated with lower PUFAs later in childhood. Future work should examine potential mechanisms of association, including dietary intake or direct effects on polyunsaturated fatty acid levels or metabolism. IMPACT: In this longitudinal study, the key message is that diurnal cortisol patterns and greater parent-reported psychosocial stress exposure in early childhood are associated with lower plasma polyunsaturated fatty acid containing lipids 5 years later, potentially indicating altered dietary intake or metabolism associated with psychosocial stress. Untargeted metabolomics and lipidomics can be used to assess changes in metabolism response to psychosocial stress. Stress exposure in early childhood may be associated with the future metabolome. Future work should examine potential pathways of association, including dietary intake and direct effects on metabolism.


Asunto(s)
Experiencias Adversas de la Infancia , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/sangre , Lípidos/análisis , Antropometría , Biomarcadores/sangre , Niño , Preescolar , Grasas de la Dieta , Ácidos Grasos , Femenino , Humanos , Hidrocortisona/metabolismo , Lactante , Estudios Longitudinales , Masculino , Metabolómica , Pobreza , Estrés Psicológico
9.
Diabetologia ; 63(2): 287-295, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31802145

RESUMEN

AIMS/HYPOTHESIS: To understand the complex metabolic changes that occur long before the diagnosis of type 2 diabetes, we investigated differences in metabolomic profiles in plasma between prediabetic and normoglycaemic individuals for subtypes of prediabetes defined by fasting glucose, 2 h glucose and HbA1c measures. METHODS: Untargeted metabolomics data were obtained from 155 plasma samples from 127 Mexican American individuals from Starr County, TX, USA. None had type 2 diabetes at the time of sample collection and 69 had prediabetes by at least one criterion. We tested statistical associations of amino acids and other metabolites with each subtype of prediabetes. RESULTS: We identified distinctive differences in amino acid profiles between prediabetic and normoglycaemic individuals, with further differences in amino acid levels among subtypes of prediabetes. When testing all named metabolites, several fatty acids were also significantly associated with 2 h glucose levels. Multivariate discriminative analyses show that untargeted metabolomic data have considerable potential for identifying metabolic differences among subtypes of prediabetes. CONCLUSIONS/INTERPRETATION: People with each subtype of prediabetes have a distinctive metabolomic signature, beyond the well-known differences in branched-chain amino acids. DATA AVAILABILITY: Metabolomics data are available through the NCBI database of Genotypes and Phenotypes (dbGaP, accession number phs001166; www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001166.v1.p1).


Asunto(s)
Metabolómica/métodos , Adulto , Anciano , Aminoácidos de Cadena Ramificada/sangre , Aminoácidos de Cadena Ramificada/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Ayuno/sangre , Hemoglobina Glucada/metabolismo , Humanos , Americanos Mexicanos , Persona de Mediana Edad , Análisis Multivariante , Estado Prediabético/sangre , Estado Prediabético/metabolismo , Texas , Estados Unidos , Adulto Joven
10.
J Biol Chem ; 292(12): 4766-4769, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28188288

RESUMEN

Itaconic acid is an important metabolite produced by macrophages after stimulation with LPS. The role of itaconate in the inflammatory cascade is unclear. Here we used [13C]itaconate and dimethyl [13C]itaconate (DMI) to probe itaconate metabolism, and find that [13C]DMI is not metabolized to itaconate. [13C]Itaconate in the cell culture medium leads to elevated intracellular levels of unlabeled succinate, with no evidence of intracellular uptake. The goal of this study is to encourage the development of effective pro-drug strategies to increase the intracellular levels of itaconate, which will enable more conclusive analysis of its action on macrophages and other cell and tissue types.


Asunto(s)
Inflamación/metabolismo , Macrófagos/metabolismo , Metaboloma , Succinatos/metabolismo , Animales , Células Cultivadas , Lipopolisacáridos/metabolismo , Metabolómica , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Ácido Succínico/metabolismo
11.
Bioinformatics ; 33(10): 1545-1553, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137712

RESUMEN

MOTIVATION: Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. RESULTS: Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. AVAILABILITY AND IMPLEMENTATION: http://metscape.med.umich.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Redes y Vías Metabólicas , Metabolómica/métodos , Modelos Biológicos , Adulto , Femenino , Humanos , Espectrometría de Masas/métodos , Persona de Mediana Edad
12.
Respir Res ; 19(1): 60, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636049

RESUMEN

BACKGROUND: It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. METHODS: Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. RESULTS: The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. CONCLUSIONS: The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Metaboloma/fisiología , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/mortalidad , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Lípidos/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/genética
13.
J Nutr ; 148(4): 562-572, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29659960

RESUMEN

Background: trans-10,cis-12 Conjugated linoleic acid (t10,c12-CLA) is a dietary supplement that promotes weight loss by increasing fat oxidation and energy expenditure. We previously reported that in the absence of t10,c12-CLA, mice forced to lose equivalent body weight by food restriction (FR) do not exhibit increases in fat oxidation or energy expenditure but have improved glucose metabolism, consistent with FR as a metabolically healthy weight-loss method. Objective: Because diet is a primary determinant of gut bacterial populations, we hypothesized that the disparate metabolic effects accompanying weight loss from t10,c12-CLA or FR could be related to altered intestinal microbiota. Methods: Ten-week-old male LDL receptor-deficient (Ldlr-/-) mice were fed a high-fat, high-sucrose diet (HFHS; 36% lard fat, 36.2% sucrose + 0.15% cholesterol) for 12 wk (baseline), then switched to the HFHS diet alone (obese control), HFHS + 1% c9,t11-CLA (obese fatty acid control), HFHS + 1% t10,c12-CLA (weight-loss-inducing fatty acid), or HFHS + FR (weight-loss control group with 75-85% ad libitum HFHS food intake) for a further 8 wk. Fecal microbial content, short-chain fatty acids (butyrate, acetate), tissue CLA concentrations, and intestinal nutrient transporter expression were quantified. Results: Mice fed t10,c12-CLA or assigned to FR lost 14.5% of baseline body weight. t10,c12-CLA-fed mice had elevated concentrations of fecal butyrate (2-fold) and plasma acetate (1.5-fold) compared with HFHS-fed controls. Fecal α diversity decreased by 7.6-14% in all groups. Butyrivibrio and Roseburia, butyrate-producing microbes, were enriched over time by t10,c12-CLA. By comparing with each control group, we also identified bacterial genera significantly enriched in the t10,c12-CLA recipients, including Lactobacillus, Actinobacteria, and the newly identified Ileibacterium valens of the Allobaculum genus, whereas other taxa were enriched by FR, including Clostridiales and Bacteroides. Conclusion: Modalities resulting in equivalent weight loss but with divergent metabolic effects are associated with compositional differences in the mouse intestinal microbiota.


Asunto(s)
Restricción Calórica , Colon/microbiología , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Linoleicos Conjugados/uso terapéutico , Obesidad/terapia , Pérdida de Peso/efectos de los fármacos , Ácido Acético/metabolismo , Animales , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Ácido Butírico/metabolismo , Colon/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Reductora , Ingestión de Energía , Heces/química , Heces/microbiología , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Masculino , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Obesidad/microbiología , Receptores de LDL/metabolismo , Pérdida de Peso/fisiología
14.
J Lipid Res ; 58(7): 1471-1481, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28539357

RESUMEN

A glutamate-to-lysine variant (rs58542926-T) in transmembrane 6 superfamily member 2 (TM6SF2) is associated with increased fatty liver disease and diabetes in conjunction with decreased cardiovascular disease risk. To identify mediators of the effects of TM6SF2, we tested for associations between rs58542926-T and serum lipoprotein/metabolite measures in cross-sectional data from nondiabetic statin-naïve participants. We identified independent associations between rs58542926-T and apoB-100 particles (ß = -0.057 g/l, P = 1.99 × 10-14) and tyrosine levels (ß = 0.0020 mmol/l, P = 1.10 × 10-8), controlling for potential confounders, in 6,929 Finnish men. The association between rs58542926-T and apoB-100 was confirmed in an independent sample of 2,196 Finnish individuals from the FINRISK study (ßreplication = -0.029, Preplication = 0.029). Secondary analyses demonstrated an rs58542926-T dose-dependent decrease in particle concentration, cholesterol, and triglyceride (TG) content for VLDL and LDL particles (P < 0.001 for all). No significant associations between rs58542926-T and HDL measures were observed. TM6SF2 SNP rs58542926-T and tyrosine levels were associated with increased incident T2D risk in both METSIM and FINRISK. Decreased liver production/secretion of VLDL, decreased cholesterol and TGs in VLDL/LDL particles in serum, and increased tyrosine levels identify possible mechanisms by which rs58542926-T exerts its effects on increasing risk of fatty liver disease, decreasing cardiovascular disease, and increasing diabetes risk, respectively.


Asunto(s)
Apolipoproteína B-100/sangre , Genotipo , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Tirosina/sangre , Estudios Transversales , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Mutación
15.
J Biol Chem ; 291(26): 13715-29, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129239

RESUMEN

Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.


Asunto(s)
Ácido Aspártico/análogos & derivados , Glutamina/metabolismo , Neoplasias Inflamatorias de la Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Ácido Aspártico/biosíntesis , Ácido Aspártico/genética , Línea Celular Tumoral , Femenino , Glutamina/genética , Humanos , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Proteínas de Neoplasias/genética , Proteínas de Unión al GTP rho/genética , Proteína rhoC de Unión a GTP
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 537-551, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27890529

RESUMEN

We recently showed that the anaplerotic enzyme pyruvate carboxylase (PC) is up-regulated in human breast cancer tissue and its expression is correlated with the late stages of breast cancer and tumor size [Phannasil et al., PloS One 10, e0129848, 2015]. In the current study we showed that PC enzyme activity is much higher in the highly invasive breast cancer cell line MDA-MB-231 than in less invasive breast cancer cell lines. We generated multiple stable PC knockdown cell lines from the MDA-MB-231 cell line and used mass spectrometry with 13C6-glucose and 13C5-glutamine to discern the pathways that use PC in support of cell growth. Cells with severe PC knockdown showed a marked reduction in viability and proliferation rates suggesting the perturbation of pathways that are involved in cancer invasiveness. Strong PC suppression lowered glucose incorporation into downstream metabolites of oxaloacetate, the product of the PC reaction, including malate, citrate and aspartate. Levels of pyruvate, lactate, the redox partner of pyruvate, and acetyl-CoA were also lower suggesting the impairment of mitochondrial pyruvate cycles. Serine, glycine and 5-carbon sugar levels and flux of glucose into fatty acids were decreased. ATP, ADP and NAD(H) levels were unchanged indicating that PC suppression did not significantly affect mitochondrial energy production. The data indicate that the major metabolic roles of PC in invasive breast cancer are primarily anaplerosis, pyruvate cycling and mitochondrial biosynthesis of precursors of cellular components required for breast cancer cell growth and replication.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Redes y Vías Metabólicas , Invasividad Neoplásica/patología , Piruvato Carboxilasa/metabolismo , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Vías Biosintéticas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ácido Cítrico/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Glicina/metabolismo , Glucólisis , Humanos , Ácido Láctico/metabolismo , Malatos/metabolismo , Espectrometría de Masas , Invasividad Neoplásica/genética , Nucleótidos/metabolismo , Piruvato Carboxilasa/genética , Ácido Pirúvico/metabolismo , Serina/metabolismo
17.
Physiol Genomics ; 48(11): 816-825, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27637250

RESUMEN

Intrinsic aerobic exercise capacity can influence many complex traits including obesity and aging. To study this connection we established two rat lines by divergent selection of untrained aerobic capacity. After 32 generations the high capacity runners (HCR) and low capacity runners (LCR) differed in endurance running distance and body fat, blood glucose, other health indicators, and natural life span. To understand the interplay among genetic differences, chronological age, and acute exercise we performed microarray-based gene expression analyses in skeletal muscle with a 2×2×2 design to simultaneously compare HCR and LCR, old and young animals, and rest and exhaustion. Transcripts for mitochondrial function are expressed higher in HCRs than LCRs at both rest and exhaustion and for both age groups. Expression of cell adhesion and extracellular matrix genes tend to decrease with age. This and other age effects are more prominent in LCRs than HCRs, suggesting that HCRs have a slower aging process and this may be partly due to their better metabolic health. Strenuous exercise mainly affects transcription regulation and cellular response. The effects of any one factor often depend on the other two. For example, there are ∼140 and ∼110 line-exercise "interacting" genes for old and young animals, respectively. Many genes highlighted in our study are consistent with prior reports, but many others are novel. The gene- and pathway-level statistics for the main effects, either overall or stratified, and for all possible interactions, represent a rich reference dataset for understanding the interdependence among lines, aging, and exercise.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Animales , Femenino , Perfilación de la Expresión Génica , Modelos Animales , Análisis de Componente Principal , Ratas
18.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G734-G743, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27586649

RESUMEN

Total parenteral nutrition (TPN) leads to a shift in small intestinal microbiota with a characteristic dominance of Proteobacteria This study examined how metabolomic changes within the small bowel support an altered microbial community in enterally deprived mice. C57BL/6 mice were given TPN or enteral chow. Metabolomic analysis of jejunal contents was performed by liquid chromatography/mass spectrometry (LC/MS). In some experiments, leucine in TPN was partly substituted with [13C]leucine. Additionally, jejunal contents from TPN-dependent and enterally fed mice were gavaged into germ-free mice to reveal whether the TPN phenotype was transferrable. Small bowel contents of TPN mice maintained an amino acid composition similar to that of the TPN solution. Mass spectrometry analysis of small bowel contents of TPN-dependent mice showed increased concentration of 13C compared with fed mice receiving saline enriched with [13C]leucine. [13C]leucine added to the serosal side of Ussing chambers showed rapid permeation across TPN-dependent jejunum, suggesting increased transmucosal passage. Single-cell analysis by fluorescence in situ hybridization (FISH)-NanoSIMS demonstrated uptake of [13C]leucine by TPN-associated bacteria, with preferential uptake by Enterobacteriaceae Gavage of small bowel effluent from TPN mice into germ-free, fed mice resulted in a trend toward the proinflammatory TPN phenotype with loss of epithelial barrier function. TPN dependence leads to increased permeation of TPN-derived nutrients into the small intestinal lumen, where they are predominately utilized by Enterobacteriaceae The altered metabolomic composition of the intestinal lumen during TPN promotes dysbiosis.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Nutrición Parenteral Total , Sepsis/metabolismo , Animales , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Yeyuno/microbiología , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Sepsis/microbiología
19.
Am J Physiol Heart Circ Physiol ; 311(1): H286-98, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208163

RESUMEN

Despite the fact that nucleotides and adenosine help regulate vascular tone through purinergic signaling pathways, little is known regarding their contributions to the pathobiology of pulmonary arterial hypertension, a condition characterized by elevated pulmonary vascular resistance and remodeling. Even less is known about the potential role that alterations in CD39 (ENTPD1), the ectonucleotidase responsible for the conversion of the nucleotides ATP and ADP to AMP, may play in pulmonary arterial hypertension. In this study we identified decreased CD39 expression on the pulmonary endothelium of patients with idiopathic pulmonary arterial hypertension. We next determined the effects of CD39 gene deletion in mice exposed to normoxia or normobaric hypoxia (10% oxygen). Compared with controls, hypoxic CD39(-/-) mice were found to have a markedly elevated ATP-to-adenosine ratio, higher pulmonary arterial pressures, more right ventricular hypertrophy, more arterial medial hypertrophy, and a pro-thrombotic phenotype. In addition, hypoxic CD39(-/-) mice exhibited a marked increase in lung P2X1 receptors. Systemic reconstitution of ATPase and ADPase enzymatic activities through continuous administration of apyrase decreased pulmonary arterial pressures in hypoxic CD39(-/-) mice to levels found in hypoxic CD39(+/+) controls. Treatment with NF279, a potent and selective P2X1 receptor antagonist, lowered pulmonary arterial pressures even further. Our study is the first to implicate decreased CD39 and resultant alterations in circulating purinergic signaling ligands and cognate receptors in the pathobiology of pulmonary arterial hypertension. Reconstitution and receptor blocking experiments suggest that phosphohydrolysis of purinergic nucleotide tri- and diphosphates, or blocking of the P2X1 receptor could serve as treatment for pulmonary arterial hypertension.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/genética , Antihipertensivos/farmacología , Apirasa/deficiencia , Apirasa/genética , Apirasa/farmacología , Presión Arterial , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Hidrólisis , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X1/efectos de los fármacos , Índice de Severidad de la Enfermedad , Transducción de Señal , Suramina/análogos & derivados , Suramina/farmacología , Remodelación Vascular , Remodelación Ventricular
20.
J Biol Chem ; 289(19): 13575-88, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24675078

RESUMEN

Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in ß cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-(13)C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD(+) ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying ß cell insulin secretion.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glicerofosfolípidos/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Ácidos Grasos/genética , Glucosa/genética , Glicerofosfolípidos/genética , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Metabolismo de los Lípidos/fisiología , Metaboloma , Oxidación-Reducción , Ratas , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA